亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploratory Development of Algorithms for Determining Driver Attention Status

分散注意力 分心驾驶 计算机科学 任务(项目管理) 驾驶模拟器 毒物控制 算法 机器学习 人工智能 模拟 工程类 心理学 医学 环境卫生 神经科学 系统工程
作者
Eileen Herbers,Marty Miller,Luke Neurauter,Jacob Walters,Daniel Gläser
出处
期刊:Human Factors [SAGE]
标识
DOI:10.1177/00187208231198932
摘要

Varying driver distraction algorithms were developed using vehicle kinematics and driver gaze data obtained from a camera-based driver monitoring system (DMS).Distracted driving characteristics can be difficult to accurately detect due to wide variation in driver behavior across driving environments. The growing availability of information about drivers and their involvement in the driving task increases the opportunity for accurately recognizing attention state.A baseline for driver distraction levels was developed using a video feed of 24 separate drivers in varying naturalistic driving conditions. This initial assessment was used to develop four buffer-based algorithms that aimed to determine a driver's real-time attentiveness, via a variety of metrics and combinations thereof.Of those tested, the optimal algorithm included ungrouped glance locations and speed. Notably, as an algorithm's performance of detecting very distracted drivers improved, its accuracy for correctly identifying attentive drivers decreased.At a minimum, drivers' gaze position and vehicle speed should be included when designing driver distraction algorithms to delineate between glance patterns observed at high and low speeds. Distraction algorithms should be designed with an understanding of their limitations, including instances in which they may fail to detect distracted drivers, or falsely notify attentive drivers.This research adds to the body of knowledge related to driver distraction and contributes to available methods to potentially address and reduce occurrences. Machine learning algorithms can build on the data elements discussed to increase distraction detection accuracy using robust artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘忧Aquarius完成签到,获得积分10
24秒前
Wang完成签到 ,获得积分20
27秒前
爱静静应助科研通管家采纳,获得10
35秒前
1分钟前
1分钟前
胖哥发布了新的文献求助10
1分钟前
活泼新儿完成签到 ,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
谭凯文完成签到 ,获得积分10
2分钟前
lishan完成签到 ,获得积分10
3分钟前
NexusExplorer应助logen采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
胖哥发布了新的文献求助10
5分钟前
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
ding应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
mariawang发布了新的文献求助10
7分钟前
7分钟前
logen发布了新的文献求助10
7分钟前
logen完成签到,获得积分20
7分钟前
胖哥发布了新的文献求助10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
11分钟前
乾坤侠客LW完成签到,获得积分10
11分钟前
12分钟前
乐观海云完成签到 ,获得积分10
12分钟前
牛八先生完成签到,获得积分10
12分钟前
13分钟前
13分钟前
14分钟前
所所应助科研通管家采纳,获得10
14分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265525
求助须知:如何正确求助?哪些是违规求助? 2905557
关于积分的说明 8334024
捐赠科研通 2575835
什么是DOI,文献DOI怎么找? 1400135
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532