Deep learning-assisted identification and quantification of aneurysmal subarachnoid hemorrhage in non-contrast CT scans: Development and external validation of Hybrid 2D/3D UNet

医学 人工智能 蛛网膜下腔出血 深度学习 分割 放射科 Sørensen–骰子系数 冲程(发动机) 对比度(视觉) 卷积神经网络 模式识别(心理学) 计算机科学 图像分割 外科 机械工程 工程类
作者
Ping Hu,Haizhu Zhou,Tengfeng Yan,Hongping Miu,Feng Xiao,Xinyi Zhu,Lei Shu,Shuang Yang,Ruiyun Jin,Wenlei Dou,Baoyu Ren,Lizhen Zhu,Wanrong Liu,Yihan Zhang,Kaisheng Zeng,Minhua Ye,Shigang Lv,Miaojing Wu,Gang Deng,Rong Hu,Renya Zhan,Qianxue Chen,Dong Zhang,Xingen Zhu
出处
期刊:NeuroImage [Elsevier]
卷期号:279: 120321-120321 被引量:8
标识
DOI:10.1016/j.neuroimage.2023.120321
摘要

Accurate stroke assessment and consequent favorable clinical outcomes rely on the early identification and quantification of aneurysmal subarachnoid hemorrhage (aSAH) in non-contrast computed tomography (NCCT) images. However, hemorrhagic lesions can be complex and difficult to distinguish manually. To solve these problems, here we propose a novel Hybrid 2D/3D UNet deep-learning framework for automatic aSAH identification and quantification in NCCT images. We evaluated 1824 consecutive patients admitted with aSAH to four hospitals in China between June 2018 and May 2022. Accuracy and precision, Dice scores and intersection over union (IoU), and interclass correlation coefficients (ICC) were calculated to assess model performance, segmentation performance, and correlations between automatic and manual segmentation, respectively. A total of 1355 patients with aSAH were enrolled: 931, 101, 179, and 144 in four datasets, of whom 326 were scanned with Siemens, 640 with Philips, and 389 with GE Medical Systems scanners. Our proposed deep-learning method accurately identified (accuracies 0.993-0.999) and segmented (Dice scores 0.550-0.897) hemorrhage in both the internal and external datasets, even combinations of hemorrhage subtypes. We further developed a convenient AI-assisted platform based on our algorithm to assist clinical workflows, whose performance was comparable to manual measurements by experienced neurosurgeons (ICCs 0.815-0.957) but with greater efficiency and reduced cost. While this tool has not yet been prospectively tested in clinical practice, our innovative hybrid network algorithm and platform can accurately identify and quantify aSAH, paving the way for fast and cheap NCCT interpretation and a reliable AI-based approach to expedite clinical decision-making for aSAH patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王一一完成签到,获得积分10
1秒前
axiba发布了新的文献求助10
1秒前
1秒前
1秒前
ketaman发布了新的文献求助10
2秒前
不开心完成签到,获得积分10
2秒前
奋斗靖仇完成签到 ,获得积分10
3秒前
精明的迎松应助CHer采纳,获得10
3秒前
Nikita发布了新的文献求助10
4秒前
科目三应助ww采纳,获得10
4秒前
5秒前
Qixin完成签到 ,获得积分20
5秒前
淡淡向卉完成签到,获得积分10
5秒前
江风海韵完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助李瑁瑁采纳,获得10
6秒前
lcy发布了新的文献求助10
7秒前
7秒前
ocean发布了新的文献求助10
7秒前
英姑应助Paul_Geromeng采纳,获得10
8秒前
8秒前
9秒前
暮雨发布了新的文献求助30
9秒前
搜集达人应助冷静的荣轩采纳,获得10
9秒前
如此纠结完成签到,获得积分10
11秒前
euphoria发布了新的文献求助10
11秒前
11秒前
SciGPT应助中央戏精学院采纳,获得10
11秒前
12秒前
wangwnagm发布了新的文献求助10
12秒前
尊敬寒松完成签到 ,获得积分10
12秒前
perennis发布了新的文献求助20
12秒前
甜甜玫瑰应助ALUCK采纳,获得10
12秒前
Hello应助111采纳,获得10
12秒前
周安宁发布了新的文献求助10
13秒前
13秒前
黑暗向日葵完成签到,获得积分20
13秒前
骑自行车的飞鱼完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232703
求助须知:如何正确求助?哪些是违规求助? 2879469
关于积分的说明 8211416
捐赠科研通 2546954
什么是DOI,文献DOI怎么找? 1376476
科研通“疑难数据库(出版商)”最低求助积分说明 647624
邀请新用户注册赠送积分活动 623003