Remaining useful life prediction of lithium-ion batteries via an EIS based deep learning approach

电池(电) 电阻抗 介电谱 锂(药物) 输出阻抗 材料科学 计算机科学 电气工程 电化学 工程类 化学 物理 功率(物理) 电极 医学 物理化学 量子力学 内分泌学
作者
Jie Li,Shiming Zhao,Md Sipon Miah,Mingbo Niu
出处
期刊:Energy Reports [Elsevier BV]
卷期号:10: 3629-3638 被引量:12
标识
DOI:10.1016/j.egyr.2023.10.030
摘要

Reliable life prediction technology is of great significance in ensuring a safe and efficient lifetime of lithium batteries. However, the traditional health factors such as battery capacity are the effects of battery aging rather than the direct causes, which cannot directly reflect the internal degradation mechanism information of the battery, and the prediction accuracy is easily affected by the working environment of the battery. Electrochemical impedance spectroscopy (EIS) data can more directly reflect the internal mechanism information of the battery, which includes a wealth of battery aging information. In order to deeply investigate the mapping relationship between impedance spectrum and remaining useful life (RUL) of lithium batteries, EIS method is employed to obtain the impedance and phase of lithium batteries under different health states and temperatures, as well as explore the visualization and quantification of impedance frequency response of lithium battery. Furthermore, the mapping relationship between RUL and the lithium battery impedance is investigated in a full impedance spectrum at different temperatures. It is found that, as lithium battery aging, its negative imaginary parts impedance increases significantly, especially in the middle of the frequency band, and has no significant dependence on temperature. While the real part impedance shows an obvious dependence on temperature. Therefore, it is found that the negative imaginary parts impedance of impedance spectrum has a well-fit characterization ability for RUL of a lithium battery. In this paper, a fusion neural network model of Conv1d-SAM (one-dimensional convolutional neural network-self-attention mechanism) was established with negative imaginary part impedance as input factor to predict battery RUL. The predicted results show that Conv1d-SAM has improved accuracy and stability in RUL prediction, and the mean absolute error function of the proposed model is increased by 72% compared with the latest published method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欣喜的书芹完成签到 ,获得积分10
3秒前
黎某完成签到,获得积分10
6秒前
微毒麻醉发布了新的文献求助10
6秒前
图图完成签到,获得积分10
7秒前
7秒前
Ava应助研友_Ze2vV8采纳,获得10
10秒前
10秒前
11秒前
倪l完成签到,获得积分10
12秒前
liu发布了新的文献求助10
14秒前
和和和完成签到,获得积分10
16秒前
17秒前
充电宝应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
NICAI应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
嘿嘿应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
哈哈发布了新的文献求助10
21秒前
JamesPei应助研友_Ze2vV8采纳,获得10
21秒前
英姑应助怕黑傲珊采纳,获得10
22秒前
28秒前
oi发布了新的文献求助10
28秒前
共享精神应助研友_Ze2vV8采纳,获得10
32秒前
微毒麻醉完成签到,获得积分10
32秒前
果果完成签到,获得积分10
34秒前
34秒前
是真灵还是机灵完成签到 ,获得积分10
35秒前
Tabby完成签到,获得积分10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741468
求助须知:如何正确求助?哪些是违规求助? 3284100
关于积分的说明 10038512
捐赠科研通 3000962
什么是DOI,文献DOI怎么找? 1646907
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478