A physics-informed Transformer model for vehicle trajectory prediction on highways

可解释性 推论 深度学习 弹道 计算机科学 人工神经网络 人工智能 机器学习 变压器 复制 模拟 工程类 统计 数学 物理 电压 天文 电气工程
作者
Maosi Geng,Junyi Li,Yingji Xia,Xiqun Chen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:154: 104272-104272 被引量:8
标识
DOI:10.1016/j.trc.2023.104272
摘要

Autonomous Vehicles (AVs) have made remarkable developments and are anticipated to replace human drivers. In transitioning from human-driven vehicles to fully AVs, one crucial task is to predict the trajectories of the subject vehicle and its surrounding vehicles in real time. Most existing methods of vehicle trajectory prediction on highways are based on physical models or purely data-driven models. However, they either yield unsatisfactory prediction performance or lack model interpretability and physical implications. This paper proposes a Physics-Informed Deep Learning framework that fully leverages the advantages of data-driven and physics-based models to go beyond the existing models. We use the Transformer neural network architecture with self-attention as Physics-Uninformed Neural Network (PUNN) and Intelligent Driver Model (IDM) as physical model to construct of Physics-Informed Transformer-Intelligent Driver Model (PIT-IDM). Extensive experiments have been conducted on two datasets with different traffic environments, i.e., Next Generation SIMulation (NGSIM) data in the US and the Ubiquitous Traffic Eyes (UTE) data in China, to verify model accuracy and efficiency. Compared with the three kinds of baselines by relative and absolute measures of effectiveness, the best performing PIT-IDM reduces longitudinal trajectory prediction errors for long horizons by 5%-50%, some even reduced up to 70%. Extensive empirical analyses have been carried out to verify its excellent spatio-temporal transferability and explore the physics-informed mechanism underlying this deep learning method. The training and inference time analysis indicates that although it takes longer to train PIT-IDM, it requires fewer calls and accumulates fewer errors with less computation time in real-world applications. The overall results further validate the efficacy of this Physics-Informed Deep Learning framework in enhancing model accuracy, interpretability, and transferability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平平平平完成签到 ,获得积分10
2秒前
5秒前
小哲子完成签到,获得积分10
7秒前
Skywalker完成签到,获得积分10
18秒前
19秒前
20秒前
胜胜糖完成签到 ,获得积分10
25秒前
WW发布了新的文献求助10
25秒前
是小小李哇完成签到 ,获得积分10
25秒前
初夏完成签到 ,获得积分10
29秒前
黄花完成签到 ,获得积分10
32秒前
36秒前
桐桐应助WW采纳,获得30
36秒前
Ashley完成签到,获得积分10
37秒前
39秒前
JJ发布了新的文献求助10
40秒前
胜天半子完成签到 ,获得积分10
42秒前
星空完成签到 ,获得积分10
43秒前
迷人的沛山完成签到 ,获得积分10
43秒前
FUNG发布了新的文献求助10
44秒前
minino完成签到 ,获得积分10
45秒前
50秒前
橘子海完成签到 ,获得积分10
54秒前
失眠的香蕉完成签到 ,获得积分10
1分钟前
科研通AI2S应助FUNG采纳,获得10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
学术完成签到 ,获得积分10
1分钟前
richard1357完成签到 ,获得积分10
1分钟前
彭于晏应助JJ采纳,获得10
1分钟前
chenbin完成签到,获得积分10
1分钟前
1分钟前
Chasing完成签到 ,获得积分10
1分钟前
陈米花完成签到,获得积分10
1分钟前
yyjl31完成签到,获得积分10
1分钟前
Simon_chat完成签到,获得积分10
1分钟前
Hank完成签到 ,获得积分10
1分钟前
General完成签到 ,获得积分10
1分钟前
吐司炸弹完成签到,获得积分10
1分钟前
mayfly完成签到,获得积分10
1分钟前
LT完成签到 ,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793684
关于积分的说明 7807147
捐赠科研通 2450016
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350