A physics-informed Transformer model for vehicle trajectory prediction on highways

可解释性 推论 深度学习 弹道 计算机科学 人工神经网络 人工智能 机器学习 变压器 复制 模拟 工程类 统计 数学 物理 电压 天文 电气工程
作者
Maosi Geng,Junyi Li,Yingji Xia,Xiqun Chen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:154: 104272-104272 被引量:8
标识
DOI:10.1016/j.trc.2023.104272
摘要

Autonomous Vehicles (AVs) have made remarkable developments and are anticipated to replace human drivers. In transitioning from human-driven vehicles to fully AVs, one crucial task is to predict the trajectories of the subject vehicle and its surrounding vehicles in real time. Most existing methods of vehicle trajectory prediction on highways are based on physical models or purely data-driven models. However, they either yield unsatisfactory prediction performance or lack model interpretability and physical implications. This paper proposes a Physics-Informed Deep Learning framework that fully leverages the advantages of data-driven and physics-based models to go beyond the existing models. We use the Transformer neural network architecture with self-attention as Physics-Uninformed Neural Network (PUNN) and Intelligent Driver Model (IDM) as physical model to construct of Physics-Informed Transformer-Intelligent Driver Model (PIT-IDM). Extensive experiments have been conducted on two datasets with different traffic environments, i.e., Next Generation SIMulation (NGSIM) data in the US and the Ubiquitous Traffic Eyes (UTE) data in China, to verify model accuracy and efficiency. Compared with the three kinds of baselines by relative and absolute measures of effectiveness, the best performing PIT-IDM reduces longitudinal trajectory prediction errors for long horizons by 5%-50%, some even reduced up to 70%. Extensive empirical analyses have been carried out to verify its excellent spatio-temporal transferability and explore the physics-informed mechanism underlying this deep learning method. The training and inference time analysis indicates that although it takes longer to train PIT-IDM, it requires fewer calls and accumulates fewer errors with less computation time in real-world applications. The overall results further validate the efficacy of this Physics-Informed Deep Learning framework in enhancing model accuracy, interpretability, and transferability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lexa发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
可耐发布了新的文献求助10
4秒前
jjsss完成签到,获得积分20
6秒前
8秒前
8秒前
忽然之间完成签到,获得积分10
12秒前
lai完成签到,获得积分10
14秒前
ming完成签到 ,获得积分10
17秒前
路弈完成签到 ,获得积分10
17秒前
kkkche发布了新的文献求助10
17秒前
19秒前
fagao完成签到,获得积分10
21秒前
Lexa完成签到,获得积分10
22秒前
22秒前
22秒前
陈韵熹发布了新的文献求助10
22秒前
Yucong完成签到,获得积分10
22秒前
keyandalao发布了新的文献求助10
23秒前
希法应助青一采纳,获得10
23秒前
23秒前
洪山老狗完成签到,获得积分10
24秒前
Andrew发布了新的文献求助10
24秒前
一护城完成签到 ,获得积分10
24秒前
缥缈的千凡完成签到,获得积分10
25秒前
27秒前
29秒前
33秒前
CipherSage应助NaNa采纳,获得10
33秒前
FreedomThh完成签到,获得积分10
34秒前
李科研发布了新的文献求助10
34秒前
一朝风月完成签到 ,获得积分10
35秒前
36秒前
36秒前
km完成签到,获得积分10
36秒前
vica发布了新的文献求助10
37秒前
柒忆完成签到,获得积分10
37秒前
ZZC发布了新的文献求助10
38秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Cathodoluminescence and its Application to Geoscience 500
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2999148
求助须知:如何正确求助?哪些是违规求助? 2659566
关于积分的说明 7201046
捐赠科研通 2295210
什么是DOI,文献DOI怎么找? 1217033
科研通“疑难数据库(出版商)”最低求助积分说明 593688
版权声明 592904