Decoding movement frequencies and limbs based on steady-state movement-related rhythms from noninvasive EEG

解码方法 脑电图 节奏 计算机科学 运动(音乐) 语音识别 物理医学与康复 心理学 神经科学 医学 算法 物理 声学
作者
Yuxuan Wei,Xu Wang,Rongfu Luo,Ximing Mai,Songwei Li,Jianjun Meng
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066019-066019
标识
DOI:10.1088/1741-2552/ad01de
摘要

Abstract Objective. Decoding different types of movements noninvasively from electroencephalography (EEG) is an essential topic in neural engineering, especially in brain–computer interface. Although the widely used sensorimotor rhythm (SMR) is efficient in limb decoding, it lacks efficacy in decoding movement frequencies. Accumulating evidence supports the notion that the movement frequency is encoded in the steady-state movement-related rhythm (SSMRR). Our study has two primary objectives: firstly, to investigate the spatial–spectral representation of SSMRR in EEG during voluntary movements; secondly, to assess whether movement frequencies and limbs can be effectively decoded based on SSMRR. Approach. To comprehensively examine the representation of SSMRR, we investigated the frequency characteristics and spatial patterns associated with various rhythmic finger movements. Coherence analysis was performed between the sensor or source domain EEG and finger movements recorded by data gloves. A fusion model based on spectral SNR features and filter-bank common spatial pattern features was utilized to decode movement frequencies and limbs. Main results. At the group-level, sensor domain, and source domain coherence maps demonstrated that the accurate movement frequency ( f 0 ) and its first harmonic ( f 1 ) were encoded in the contralateral motor cortex. For the four-class classification, including two movement frequencies for both hands, the decoding accuracies for externally paced and internally paced movements were 73.14 ± 15.86% and 66.30 ± 17.26% (averaged across ten subjects, chance levels at 31.05% and 30.96%). Notably, the average results of five subjects with the highest decoding accuracies reached 87.21 ± 7.44% and 80.44 ± 7.99%. Significance. Our results verified the EEG representation of SSMRR and proved that the movement frequency and limb could be effectively decoded based on spatial–spectral features extracted from SSMRR. We suggest that SSMRR can serve as a complement to SMR to expand the range of decodable movement types and the approaches of limb decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aixia发布了新的文献求助10
刚刚
小唐尼完成签到,获得积分10
刚刚
4秒前
皮老师发布了新的文献求助10
4秒前
幸福大白完成签到,获得积分10
5秒前
6秒前
Cml发布了新的文献求助30
7秒前
河大谢广坤完成签到,获得积分10
7秒前
8秒前
9秒前
111111发布了新的文献求助10
9秒前
12秒前
陌予发布了新的文献求助10
13秒前
14秒前
缓慢的开山完成签到 ,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
ash完成签到,获得积分20
21秒前
21秒前
22秒前
英俊的铭应助月月采纳,获得10
25秒前
ash发布了新的文献求助100
25秒前
周也发布了新的文献求助10
25秒前
文献菜鸟完成签到 ,获得积分10
26秒前
淅淅12345完成签到,获得积分20
26秒前
小二郎应助zhan采纳,获得10
26秒前
29秒前
29秒前
osmanthus完成签到,获得积分10
29秒前
feng1235完成签到,获得积分10
31秒前
拓木幸子完成签到,获得积分10
32秒前
热心市民小红花应助陈昊采纳,获得10
32秒前
33秒前
lcr发布了新的文献求助10
34秒前
Ginkgo完成签到 ,获得积分10
35秒前
安静海露完成签到,获得积分10
35秒前
36秒前
zhan完成签到,获得积分10
37秒前
顾矜应助anna采纳,获得10
37秒前
朴素的士晋完成签到 ,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073