Decoding movement frequencies and limbs based on steady-state movement-related rhythms from noninvasive EEG

解码方法 脑电图 节奏 计算机科学 运动(音乐) 语音识别 物理医学与康复 心理学 神经科学 医学 算法 物理 声学
作者
Yuxuan Wei,Xu Wang,Rongfu Luo,Ximing Mai,Songwei Li,Jianjun Meng
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066019-066019
标识
DOI:10.1088/1741-2552/ad01de
摘要

Abstract Objective. Decoding different types of movements noninvasively from electroencephalography (EEG) is an essential topic in neural engineering, especially in brain–computer interface. Although the widely used sensorimotor rhythm (SMR) is efficient in limb decoding, it lacks efficacy in decoding movement frequencies. Accumulating evidence supports the notion that the movement frequency is encoded in the steady-state movement-related rhythm (SSMRR). Our study has two primary objectives: firstly, to investigate the spatial–spectral representation of SSMRR in EEG during voluntary movements; secondly, to assess whether movement frequencies and limbs can be effectively decoded based on SSMRR. Approach. To comprehensively examine the representation of SSMRR, we investigated the frequency characteristics and spatial patterns associated with various rhythmic finger movements. Coherence analysis was performed between the sensor or source domain EEG and finger movements recorded by data gloves. A fusion model based on spectral SNR features and filter-bank common spatial pattern features was utilized to decode movement frequencies and limbs. Main results. At the group-level, sensor domain, and source domain coherence maps demonstrated that the accurate movement frequency ( f 0 ) and its first harmonic ( f 1 ) were encoded in the contralateral motor cortex. For the four-class classification, including two movement frequencies for both hands, the decoding accuracies for externally paced and internally paced movements were 73.14 ± 15.86% and 66.30 ± 17.26% (averaged across ten subjects, chance levels at 31.05% and 30.96%). Notably, the average results of five subjects with the highest decoding accuracies reached 87.21 ± 7.44% and 80.44 ± 7.99%. Significance. Our results verified the EEG representation of SSMRR and proved that the movement frequency and limb could be effectively decoded based on spatial–spectral features extracted from SSMRR. We suggest that SSMRR can serve as a complement to SMR to expand the range of decodable movement types and the approaches of limb decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助F君采纳,获得10
刚刚
刚刚
刚刚
joshar完成签到,获得积分10
1秒前
1秒前
xpd发布了新的文献求助30
2秒前
Novak发布了新的文献求助10
2秒前
2秒前
完美世界应助lvjiahui采纳,获得10
2秒前
希望天下0贩的0应助Song采纳,获得10
4秒前
4秒前
科研通AI2S应助Sunnig盈采纳,获得10
5秒前
负责鸭子完成签到,获得积分10
5秒前
jxz关闭了jxz文献求助
6秒前
coolplex发布了新的文献求助10
6秒前
荀煜祺发布了新的文献求助10
6秒前
6秒前
7秒前
yyr完成签到 ,获得积分10
7秒前
8秒前
8秒前
啥子那发布了新的文献求助10
8秒前
arinnna发布了新的文献求助10
8秒前
Sky完成签到,获得积分10
9秒前
幼稚园老大完成签到,获得积分10
9秒前
王黎应助pp采纳,获得10
9秒前
9秒前
9秒前
李健应助Eurus采纳,获得10
10秒前
乐观小霸王完成签到 ,获得积分20
11秒前
11秒前
小小组发布了新的文献求助10
11秒前
可爱的函函应助lilac采纳,获得10
12秒前
F君发布了新的文献求助10
12秒前
12秒前
yuan1226发布了新的文献求助10
13秒前
沉默凡桃发布了新的文献求助10
13秒前
NexusExplorer应助江江想毕业采纳,获得10
13秒前
ahaaa完成签到 ,获得积分10
15秒前
skippy完成签到 ,获得积分10
15秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221573
求助须知:如何正确求助?哪些是违规求助? 2870316
关于积分的说明 8170125
捐赠科研通 2537179
什么是DOI,文献DOI怎么找? 1369351
科研通“疑难数据库(出版商)”最低求助积分说明 645466
邀请新用户注册赠送积分活动 619101