亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decoding movement frequencies and limbs based on steady-state movement-related rhythms from noninvasive EEG

解码方法 脑电图 节奏 计算机科学 运动(音乐) 语音识别 物理医学与康复 心理学 神经科学 医学 算法 物理 声学
作者
Yuxuan Wei,Xu Wang,Rongfu Luo,Ximing Mai,Songwei Li,Jianjun Meng
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066019-066019
标识
DOI:10.1088/1741-2552/ad01de
摘要

Abstract Objective. Decoding different types of movements noninvasively from electroencephalography (EEG) is an essential topic in neural engineering, especially in brain–computer interface. Although the widely used sensorimotor rhythm (SMR) is efficient in limb decoding, it lacks efficacy in decoding movement frequencies. Accumulating evidence supports the notion that the movement frequency is encoded in the steady-state movement-related rhythm (SSMRR). Our study has two primary objectives: firstly, to investigate the spatial–spectral representation of SSMRR in EEG during voluntary movements; secondly, to assess whether movement frequencies and limbs can be effectively decoded based on SSMRR. Approach. To comprehensively examine the representation of SSMRR, we investigated the frequency characteristics and spatial patterns associated with various rhythmic finger movements. Coherence analysis was performed between the sensor or source domain EEG and finger movements recorded by data gloves. A fusion model based on spectral SNR features and filter-bank common spatial pattern features was utilized to decode movement frequencies and limbs. Main results. At the group-level, sensor domain, and source domain coherence maps demonstrated that the accurate movement frequency ( f 0 ) and its first harmonic ( f 1 ) were encoded in the contralateral motor cortex. For the four-class classification, including two movement frequencies for both hands, the decoding accuracies for externally paced and internally paced movements were 73.14 ± 15.86% and 66.30 ± 17.26% (averaged across ten subjects, chance levels at 31.05% and 30.96%). Notably, the average results of five subjects with the highest decoding accuracies reached 87.21 ± 7.44% and 80.44 ± 7.99%. Significance. Our results verified the EEG representation of SSMRR and proved that the movement frequency and limb could be effectively decoded based on spatial–spectral features extracted from SSMRR. We suggest that SSMRR can serve as a complement to SMR to expand the range of decodable movement types and the approaches of limb decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jackone完成签到,获得积分10
刚刚
6秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
完美世界应助cc采纳,获得10
21秒前
41秒前
cc发布了新的文献求助10
46秒前
Arthur完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助xc采纳,获得10
1分钟前
1分钟前
air233发布了新的文献求助10
1分钟前
xc发布了新的文献求助10
1分钟前
air233完成签到,获得积分10
1分钟前
1分钟前
1分钟前
莘莘发布了新的文献求助10
1分钟前
鹿茸与共发布了新的文献求助10
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
2分钟前
田様应助lalalatiancai采纳,获得10
2分钟前
务实书包完成签到,获得积分10
2分钟前
2分钟前
lalalatiancai发布了新的文献求助10
2分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
lalalatiancai完成签到,获得积分10
3分钟前
冬去春来完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
Iso完成签到,获得积分10
5分钟前
gyr完成签到,获得积分10
5分钟前
tiantian完成签到,获得积分10
6分钟前
光合作用完成签到,获得积分10
7分钟前
Nut完成签到,获得积分10
7分钟前
Nfx发布了新的文献求助10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
研友_Z14gNn发布了新的文献求助10
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746109
求助须知:如何正确求助?哪些是违规求助? 3288998
关于积分的说明 10061615
捐赠科研通 3005273
什么是DOI,文献DOI怎么找? 1650144
邀请新用户注册赠送积分活动 785740
科研通“疑难数据库(出版商)”最低求助积分说明 751242