锚固
润湿
液态金属
材料科学
氧化铁
金属
纳米技术
复合材料
冶金
工程类
结构工程
作者
Yifeng Shen,Dongdong Jin,Mingming Fu,Sanhu Liu,Zhiwu Xu,Qinghua Cao,Bo Wang,Guoqiang Li,Wenjun Chen,Shaoqin Liu,Xing Ma
标识
DOI:10.1038/s41467-023-41920-4
摘要
Magnetic liquid metal (LM) soft robots attract considerable attentions because of distinctive immiscibility, deformability and maneuverability. However, conventional LM composites relying on alloying between LM and metallic magnetic powders suffer from diminished magnetism over time and potential safety risk upon leakage of metallic components. Herein, we report a strategy to composite inert and biocompatible iron oxide (Fe3O4) magnetic nanoparticles into eutectic gallium indium LM via reactive wetting mechanism. To address the intrinsic interfacial non-wettability between Fe3O4 and LM, a silver intermediate layer was introduced to fuse with indium component into AgxIny intermetallic compounds, facilitating the anchoring of Fe3O4 nanoparticles inside LM with improved magnetic stability. Subsequently, a miniature soft robot was constructed to perform various controllable deformation and locomotion behaviors under actuation of external magnetic field. Finally, practical feasibility of applying LM soft robot in an ex vivo porcine stomach was validated under in-situ monitoring by endoscope and X-ray imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI