SIRT2
衰老
生物
灵长类动物
表观遗传学
表型
锡尔图因
细胞生物学
神经科学
乙酰化
遗传学
基因
作者
Yanxia Ye,Kuan Yang,Haisong Liu,Yang Yu,Moshi Song,Daoyuan Huang,Jinghui Lei,Yiyuan Zhang,Zunpeng Liu,Qun Chu,Yanling Fan,Sheng Zhang,Yaobin Jing,Concepción Rodrı́guez Esteban,Sheng Wang,Juan Carlos Izpisúa Belmonte,Jing Qu,Weiqi Zhang,Guang‐Hui Liu
出处
期刊:Nature Aging
日期:2023-10-02
卷期号:3 (10): 1269-1287
被引量:20
标识
DOI:10.1038/s43587-023-00486-y
摘要
Aging is a major risk factor contributing to pathophysiological changes in the heart, yet its intrinsic mechanisms have been largely unexplored in primates. In this study, we investigated the hypertrophic and senescence phenotypes in the hearts of aged cynomolgus monkeys as well as the transcriptomic and proteomic landscapes of young and aged primate hearts. SIRT2 was identified as a key protein decreased in aged monkey hearts, and engineered SIRT2 deficiency in human pluripotent stem cell-derived cardiomyocytes recapitulated key senescence features of primate heart aging. Further investigations revealed that loss of SIRT2 in human cardiomyocytes led to the hyperacetylation of STAT3, which transcriptionally activated CDKN2B and, in turn, triggered cardiomyocyte degeneration. Intra-myocardial injection of lentiviruses expressing SIRT2 ameliorated age-related cardiac dysfunction in mice. Taken together, our study provides valuable resources for decoding primate cardiac aging and identifies the SIRT2–STAT3–CDKN2B regulatory axis as a potential therapeutic target against human cardiac aging and aging-related cardiovascular diseases. Ye et al. characterize the cardioprotective effect of SIRT2 in primates and reveal an important role for the SIRT2–STAT3–CDKN2B regulatory axis in primate cardiac aging, improving understanding of the epigenetic mechanism governing cardiac aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI