A new dental CBCT metal artifact reduction method based on a dual-domain processing framework

人工智能 计算机科学 投影(关系代数) 卷积神经网络 计算机视觉 插值(计算机图形学) 锥束ct 工件(错误) 线性插值 体积热力学 还原(数学) 图像(数学) 算法 模式识别(心理学) 数学 计算机断层摄影术 医学 放射科 物理 几何学 量子力学
作者
Hui Tang,Lin Yu,Su Dong Jiang,Yu Li,Li Tian,Xu Dong Bao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175016-175016 被引量:8
标识
DOI:10.1088/1361-6560/acec29
摘要

Objective.Cone beam computed tomography (CBCT) has been wildly used in clinical treatment of dental diseases. However, patients often have metallic implants in mouth, which will lead to severe metal artifacts in the reconstructed images. To reduce metal artifacts in dental CBCT images, which have a larger amount of data and a limited field of view compared to computed tomography images, a new dental CBCT metal artifact reduction method based on a projection correction and a convolutional neural network (CNN) based image post-processing model is proposed in this paper. Approach.The proposed method consists of three stages: (1) volume reconstruction and metal segmentation in the image domain, using the forward projection to get the metal masks in the projection domain; (2) linear interpolation in the projection domain and reconstruction to build a linear interpolation (LI) corrected volume; (3) take the LI corrected volume as prior and perform the prior based beam hardening correction in the projection domain, and (4) combine the constructed projection corrected volume and LI-volume slice-by-slice in the image domain by two concatenated U-Net based models (CNN1 and CNN2). Simulated and clinical dental CBCT cases are used to evaluate the proposed method. The normalized root means square difference (NRMSD) and the structural similarity index (SSIM) are used for the quantitative evaluation of the method.Main results.The proposed method outperforms the frequency domain fusion method (FS-MAR) and a state-of-art CNN based method on the simulated dataset and yields the best NRMSD and SSIM of 4.0196 and 0.9924, respectively. Visual results on both simulated and clinical images also illustrate that the proposed method can effectively reduce metal artifacts.Significance. This study demonstrated that the proposed dual-domain processing framework is suitable for metal artifact reduction in dental CBCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
LYF完成签到,获得积分10
3秒前
浮游应助知性的安波采纳,获得10
3秒前
4秒前
5秒前
wshwx完成签到,获得积分10
5秒前
撒西不理完成签到,获得积分10
7秒前
酷波er应助嘿嘿嘿采纳,获得10
8秒前
CipherSage应助12345采纳,获得10
8秒前
8秒前
LYF发布了新的文献求助10
8秒前
忧郁小刺猬完成签到,获得积分10
10秒前
陈奕迅完成签到,获得积分10
10秒前
11秒前
11秒前
wangdh发布了新的文献求助10
13秒前
开心可乐不脆皮完成签到 ,获得积分20
15秒前
忧虑的花卷完成签到,获得积分10
15秒前
坚强夜白发布了新的文献求助10
16秒前
洁净的易巧完成签到,获得积分10
18秒前
Sophia发布了新的文献求助10
18秒前
18秒前
19秒前
SciGPT应助神勇的夜山采纳,获得10
19秒前
美满向薇发布了新的文献求助10
20秒前
天才小能喵完成签到 ,获得积分0
22秒前
搞笑羽球人完成签到,获得积分10
22秒前
酷波er应助忱麓裔采纳,获得10
24秒前
蓝天应助晴朗的蓝采纳,获得10
24秒前
24秒前
大模型应助王明磊采纳,获得10
24秒前
27秒前
dw完成签到,获得积分10
27秒前
VV完成签到,获得积分10
28秒前
乐乐完成签到,获得积分10
29秒前
Azizbek发布了新的文献求助10
29秒前
29秒前
wanci应助Sophia采纳,获得10
30秒前
今后应助ziying126采纳,获得10
30秒前
111完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546674
求助须知:如何正确求助?哪些是违规求助? 3977829
关于积分的说明 12317357
捐赠科研通 3646236
什么是DOI,文献DOI怎么找? 2008079
邀请新用户注册赠送积分活动 1043641
科研通“疑难数据库(出版商)”最低求助积分说明 932363