A new dental CBCT metal artifact reduction method based on a dual-domain processing framework

人工智能 计算机科学 投影(关系代数) 卷积神经网络 计算机视觉 插值(计算机图形学) 锥束ct 工件(错误) 线性插值 体积热力学 还原(数学) 图像(数学) 算法 模式识别(心理学) 数学 计算机断层摄影术 医学 放射科 物理 几何学 量子力学
作者
Hui Tang,Yu Lin,Su Dong Jiang,Yu Li,Li Tian,Xu Dong Bao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175016-175016 被引量:5
标识
DOI:10.1088/1361-6560/acec29
摘要

Objective.Cone beam computed tomography (CBCT) has been wildly used in clinical treatment of dental diseases. However, patients often have metallic implants in mouth, which will lead to severe metal artifacts in the reconstructed images. To reduce metal artifacts in dental CBCT images, which have a larger amount of data and a limited field of view compared to computed tomography images, a new dental CBCT metal artifact reduction method based on a projection correction and a convolutional neural network (CNN) based image post-processing model is proposed in this paper. Approach.The proposed method consists of three stages: (1) volume reconstruction and metal segmentation in the image domain, using the forward projection to get the metal masks in the projection domain; (2) linear interpolation in the projection domain and reconstruction to build a linear interpolation (LI) corrected volume; (3) take the LI corrected volume as prior and perform the prior based beam hardening correction in the projection domain, and (4) combine the constructed projection corrected volume and LI-volume slice-by-slice in the image domain by two concatenated U-Net based models (CNN1 and CNN2). Simulated and clinical dental CBCT cases are used to evaluate the proposed method. The normalized root means square difference (NRMSD) and the structural similarity index (SSIM) are used for the quantitative evaluation of the method.Main results.The proposed method outperforms the frequency domain fusion method (FS-MAR) and a state-of-art CNN based method on the simulated dataset and yields the best NRMSD and SSIM of 4.0196 and 0.9924, respectively. Visual results on both simulated and clinical images also illustrate that the proposed method can effectively reduce metal artifacts.Significance. This study demonstrated that the proposed dual-domain processing framework is suitable for metal artifact reduction in dental CBCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
静然发布了新的文献求助10
1秒前
1秒前
1秒前
SYLH应助尔沁采纳,获得30
2秒前
可爱的函函应助金不换采纳,获得10
3秒前
3秒前
3秒前
激情的元正完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
MingY发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
大眼的平松完成签到 ,获得积分10
5秒前
札七发布了新的文献求助30
5秒前
独特乘风完成签到,获得积分10
5秒前
小强呀发布了新的文献求助10
5秒前
5秒前
打打应助刘仁轨采纳,获得10
6秒前
选择性哑巴完成签到 ,获得积分10
6秒前
7秒前
科研辣椒发布了新的文献求助10
7秒前
windyhill完成签到,获得积分10
8秒前
8秒前
LEMONS应助yuanquaner采纳,获得10
9秒前
Orange应助一一采纳,获得10
9秒前
善学以致用应助飞太难采纳,获得10
9秒前
9秒前
9秒前
liling发布了新的文献求助30
10秒前
DrWang发布了新的文献求助10
11秒前
二二二发布了新的文献求助10
11秒前
11秒前
花开富贵完成签到 ,获得积分10
11秒前
传奇3应助zhoull采纳,获得10
11秒前
12秒前
半生半熟发布了新的文献求助250
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594