Video Object Segmentation using Point-based Memory Network

计算机科学 匹配(统计) 特征(语言学) 人工智能 水准点(测量) 分割 模式识别(心理学) 比例(比率) 对象(语法) 解码方法 点(几何) 计算机视觉 算法 数学 哲学 物理 统计 量子力学 语言学 地理 大地测量学 几何学
作者
Mingqi Gao,Jungong Han,Feng Zheng,James J. Q. Yu,Giovanni Montana
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:134: 109073-109073 被引量:5
标识
DOI:10.1016/j.patcog.2022.109073
摘要

Recent years have witnessed the prevalence of memory-based methods for Semi-supervised Video Object Segmentation (SVOS) which utilise past frames efficiently for label propagation. When conducting feature matching, fine-grained multi-scale feature matching has typically been performed using all query points, which inevitably results in redundant computations and thus makes the fusion of multi-scale results ineffective. In this paper, we develop a new Point-based Memory Network, termed as PMNet, to perform fine-grained feature matching on hard samples only, assuming that easy samples can already obtain satisfactory matching results without the need for complicated multi-scale feature matching. Our approach first generates an uncertainty map from the initial decoding outputs. Next, the fine-grained features at uncertain locations are sampled to match the memory features on the same scale. Finally, the matching results are further decoded to provide a refined output. The point-based scheme works with the coarsest feature matching in a complementary and efficient manner. Furthermore, we propose an approach to adaptively perform global or regional matching based on the motion history of memory points, making our method more robust against ambiguous backgrounds. Experimental results on several benchmark datasets demonstrate the superiority of our proposed method over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Jasper应助tttp采纳,获得10
3秒前
Duojie发布了新的文献求助10
3秒前
6秒前
cc发布了新的文献求助10
6秒前
Litoivda完成签到 ,获得积分10
6秒前
7秒前
8秒前
9秒前
阳光BOY发布了新的文献求助10
11秒前
12秒前
14秒前
14秒前
呆呆完成签到,获得积分10
14秒前
璨澄发布了新的文献求助10
14秒前
16秒前
英姑应助个性的汲采纳,获得10
16秒前
JamesPei应助无敌小汐采纳,获得10
17秒前
FashionBoy应助无敌小汐采纳,获得10
17秒前
Litoivda发布了新的文献求助20
18秒前
激动的萧发布了新的文献求助10
19秒前
21秒前
甜甜凉面发布了新的文献求助10
21秒前
SciGPT应助556677y采纳,获得30
22秒前
能干冬瓜完成签到,获得积分10
23秒前
慕青应助激动的萧采纳,获得10
24秒前
追梦完成签到,获得积分10
26秒前
26秒前
28秒前
pengchengxi完成签到,获得积分20
28秒前
HYT完成签到,获得积分10
29秒前
小青完成签到,获得积分10
30秒前
Orange应助能干冬瓜采纳,获得10
30秒前
充电宝应助拼搏篮球采纳,获得10
31秒前
32秒前
HYT发布了新的文献求助10
32秒前
呆呆发布了新的文献求助10
32秒前
pengchengxi发布了新的文献求助10
33秒前
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382