Novel Sparse Auto-encoder Framework with Pseudo-labeled Reinforcement for Cross Domain Fault Diagnosis with Imbalanced Samples

编码器 计算机科学 领域(数学分析) 断层(地质) 钢筋 人工智能 强化学习 自编码 模式识别(心理学) 算法 材料科学 数学 复合材料 深度学习 数学分析 地震学 地质学 操作系统
作者
Faye Zhang,Fuzheng Liu,Minghui Liu,Yilan Zhang,Mingshun Jiang,Qingmei Sui
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad86d7
摘要

Abstract By applying diagnostic expertise from one area to another that is closely related, transfer fault diagnosis is an efficient strategy for guaranteeing the secure and dependable operation of mechanical equipment. However, the majority of rotating machinery monitoring data are gathered in industrial applications under normal operating settings, which leads to an imbalance between positive and negative samples. Consequently, performing high-precision fault diagnosis with imbalanced data and different working conditions becomes challenging due to the escalating difficulty and cost of acquiring labeled fault samples. For cross domain fault diagnosis, an enhanced deep transfer Sparse Auto-Encoder (SAE) framework is provided. This approach leverages a SAE to delve deeper into fault features within imbalanced data and reconstruct the samples accordingly. Furthermore, the research proposes a Feature Domain Penalty Term (FDPT) to facilitate cross-domain training by aligning the distribution of the source and target domain data which can reduce data distribution deviation. A Pseudo-Labeled Reinforcement Training (PLRT) method is presented to further improve cross-domain classification accuracy with imbalanced samples.
Extensive experiments were conducted on two datasets to assess the proposed method. The results were compared with other algorithms, demonstrating the effectiveness and superiority of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曾完成签到,获得积分10
刚刚
zhao发布了新的文献求助30
刚刚
建新发布了新的文献求助10
1秒前
Zex发布了新的文献求助10
1秒前
吉他平方发布了新的文献求助10
2秒前
358489228发布了新的文献求助10
3秒前
4秒前
5秒前
8秒前
8秒前
小玉完成签到,获得积分20
8秒前
jlj完成签到,获得积分10
8秒前
花名为见完成签到,获得积分10
10秒前
可爱以冬完成签到 ,获得积分10
11秒前
躺不平的王山而完成签到,获得积分10
12秒前
山水木发布了新的文献求助10
13秒前
雷一鸣完成签到,获得积分10
13秒前
358489228完成签到,获得积分10
13秒前
13秒前
Rpenliebe发布了新的文献求助20
15秒前
17秒前
芈钥完成签到 ,获得积分10
19秒前
山水木完成签到,获得积分10
20秒前
Owen应助稳重的仙人掌采纳,获得10
20秒前
简单的可愁完成签到,获得积分10
20秒前
21秒前
22秒前
疯狂的咖啡豆完成签到,获得积分20
22秒前
Jasper应助qinswzaiyu采纳,获得10
23秒前
23秒前
23秒前
23秒前
cahcah发布了新的文献求助20
23秒前
丘比特应助jjb采纳,获得10
24秒前
24秒前
野原完成签到,获得积分20
24秒前
tongser完成签到,获得积分20
25秒前
25秒前
26秒前
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223053
求助须知:如何正确求助?哪些是违规求助? 2871842
关于积分的说明 8177183
捐赠科研通 2538719
什么是DOI,文献DOI怎么找? 1370752
科研通“疑难数据库(出版商)”最低求助积分说明 645870
邀请新用户注册赠送积分活动 619832