对偶(语法数字)
Atom(片上系统)
化学
材料科学
计算机科学
嵌入式系统
文学类
艺术
作者
Ping Li,Qixin Lv,Chengxi Sun,Peng Zhang,Xianjie Wang,Chao Yin,Yuyu Pan,Runfeng Chen
标识
DOI:10.1021/acs.jpclett.4c02282
摘要
Organic materials with thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) dual emission have attracted great attention in recent years, but the regulation mechanism via internal and external heavy atoms is not clear enough. Here, we carry out a systematic theoretical investigation on the photophysical properties of the materials by introducing aliphatic or aromatic bromine atoms. The molecule with aromatic bromine atoms exhibits obvious TADF owing to the effective reverse intersystem crossing (RISC) with matchable energy levels and enhanced spin orbit couplings, the molecule with aliphatic bromine atoms shows a long RTP lifetime because of the reduced nonradiative transition of triplet excitons, and the molecule with both aliphatic and aromatic bromine atoms presents balanced TADF and RTP emissions thanks to the synergy internal and external heavy-atom effects. Besides, the internal and external heavy atoms induce multisite intermolecular interactions, effectively suppressing the nonradiative process in the solid phase. The efficient RISC process and the suppressed nonradiative process of triplet excitons should be key to regulating the dual emission property. These findings and insights are of great importance for revealing the structure-performance relationship, providing theoretical guidance for the design of TADF and RTP dual emission molecules via internal and external heavy-atom effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI