亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Nonnegative Matrix Factorization With Self-Initiated Multigraph Contrastive Fusion

多重图 非负矩阵分解 数学 计算机科学 因式分解 矩阵分解 融合 基质(化学分析) 人工智能 组合数学 算法 语言学 化学 哲学 物理 特征向量 图形 量子力学 色谱法
作者
Songtao Li,Shiqian Wu,Chang Tang,Junchi Zhang,Zushuai Wei
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2024.3420738
摘要

Graph regularized nonnegative matrix factorization (GNMF) has been widely used in data representation due to its excellent dimensionality reduction. When it comes to clustering polluted data, GNMF inevitably learns inaccurate representations, leading to models that are unusually sensitive to outliers in the data. For example, in a face dataset, obscured by items such as a mask or glasses, there is a high probability that the graph regularization term incorrectly describes the association relationship for that sample, resulting in an incorrect elicitation in the matrix factorization process. In this article, a novel self-initiated unsupervised subspace learning method named robust nonnegative matrix factorization with self-initiated multigraph contrastive fusion (RNMF-SMGF) is proposed. RNMF-SMGF is capable of creating samples with different angles and learning different graph structures based on these different angles in a self-initiated method without changing the original data. In the process of subspace learning guided by graph regularization, these different graph structures are fused into a more accurate graph structure, along with entropy regularization, L2,1/2 -norm constraints to facilitate the robust learning of the proposed model and the formation of different clusters in the low-dimensional space. To demonstrate the effectiveness of the proposed model in robust clustering, we have conducted extensive experiments on several benchmark datasets and demonstrated the effectiveness of the proposed method. The source code is available at: https://github.com/LstinWh/RNMF-SMGF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张土豆完成签到 ,获得积分10
1秒前
22秒前
123468789521发布了新的文献求助10
28秒前
科研通AI5应助123468789521采纳,获得10
36秒前
赘婿应助努力学习的阿文采纳,获得10
53秒前
1分钟前
morena发布了新的文献求助100
1分钟前
范白容完成签到 ,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
1分钟前
白小黑发布了新的文献求助30
1分钟前
1分钟前
欣欣完成签到,获得积分10
2分钟前
2分钟前
Akim应助老实无色采纳,获得10
2分钟前
2分钟前
领导范儿应助Nidehuogef采纳,获得10
2分钟前
老实无色发布了新的文献求助10
2分钟前
在水一方应助zb采纳,获得10
2分钟前
拂晓完成签到,获得积分10
2分钟前
2分钟前
2分钟前
zb发布了新的文献求助10
2分钟前
Nidehuogef发布了新的文献求助10
2分钟前
2分钟前
3分钟前
lizhaonian完成签到,获得积分10
3分钟前
3分钟前
拂晓发布了新的文献求助20
3分钟前
3分钟前
妙妙蛙发布了新的文献求助10
3分钟前
3分钟前
Marciu33发布了新的文献求助10
3分钟前
123468789521发布了新的文献求助10
3分钟前
咖啡学完成签到 ,获得积分10
4分钟前
___淡完成签到 ,获得积分10
4分钟前
4分钟前
小透明应助nenoaowu采纳,获得30
4分钟前
酷波er应助nenoaowu采纳,获得10
4分钟前
雪白元风完成签到 ,获得积分10
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
How to Mind Map: The Ultimate Thinking Tool That Will Change Your Life 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700099
求助须知:如何正确求助?哪些是违规求助? 3250526
关于积分的说明 9869392
捐赠科研通 2962357
什么是DOI,文献DOI怎么找? 1624605
邀请新用户注册赠送积分活动 769447
科研通“疑难数据库(出版商)”最低求助积分说明 742247