Robust Nonnegative Matrix Factorization With Self-Initiated Multigraph Contrastive Fusion

多重图 非负矩阵分解 数学 计算机科学 因式分解 矩阵分解 融合 基质(化学分析) 人工智能 组合数学 算法 语言学 化学 哲学 物理 特征向量 图形 量子力学 色谱法
作者
Songtao Li,Shiqian Wu,Chang Tang,Junchi Zhang,Zushuai Wei
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2024.3420738
摘要

Graph regularized nonnegative matrix factorization (GNMF) has been widely used in data representation due to its excellent dimensionality reduction. When it comes to clustering polluted data, GNMF inevitably learns inaccurate representations, leading to models that are unusually sensitive to outliers in the data. For example, in a face dataset, obscured by items such as a mask or glasses, there is a high probability that the graph regularization term incorrectly describes the association relationship for that sample, resulting in an incorrect elicitation in the matrix factorization process. In this article, a novel self-initiated unsupervised subspace learning method named robust nonnegative matrix factorization with self-initiated multigraph contrastive fusion (RNMF-SMGF) is proposed. RNMF-SMGF is capable of creating samples with different angles and learning different graph structures based on these different angles in a self-initiated method without changing the original data. In the process of subspace learning guided by graph regularization, these different graph structures are fused into a more accurate graph structure, along with entropy regularization, L2,1/2 -norm constraints to facilitate the robust learning of the proposed model and the formation of different clusters in the low-dimensional space. To demonstrate the effectiveness of the proposed model in robust clustering, we have conducted extensive experiments on several benchmark datasets and demonstrated the effectiveness of the proposed method. The source code is available at: https://github.com/LstinWh/RNMF-SMGF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sophia完成签到,获得积分10
1秒前
1秒前
罗Eason完成签到,获得积分10
1秒前
无解klein瓶完成签到,获得积分20
2秒前
招水若离完成签到,获得积分0
3秒前
玄武岩完成签到,获得积分10
3秒前
外向映雁完成签到,获得积分10
3秒前
陈增飞发布了新的文献求助10
3秒前
youyou发布了新的文献求助10
4秒前
4秒前
5秒前
Ehrmantraut完成签到 ,获得积分10
5秒前
赘婿应助俎树同采纳,获得10
6秒前
温暖砖头发布了新的文献求助10
6秒前
YZH应助fd163c采纳,获得30
6秒前
苏槑特完成签到,获得积分10
7秒前
作案不留痕发布了新的文献求助200
7秒前
xx发布了新的文献求助10
8秒前
一期一会完成签到,获得积分10
9秒前
迷路的绿藻头完成签到,获得积分10
9秒前
桐桐应助科研通管家采纳,获得10
10秒前
Ava应助开拓者采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
干饭虫应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
小青椒应助玄叶采纳,获得20
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得20
11秒前
渣兔完成签到,获得积分10
11秒前
Owen应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
逆时针应助科研通管家采纳,获得10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205080
求助须知:如何正确求助?哪些是违规求助? 4383908
关于积分的说明 13651462
捐赠科研通 4241962
什么是DOI,文献DOI怎么找? 2327122
邀请新用户注册赠送积分活动 1324898
关于科研通互助平台的介绍 1277083