已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The consequences of AI training on human decision-making

任务(项目管理) 培训(气象学) 心理学 最后通牒赛局 计算机科学 认知心理学 社会心理学 应用心理学 气象学 物理 管理 经济
作者
Lauren S. Treiman,Chien-Ju Ho,Wouter Kool
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (33)
标识
DOI:10.1073/pnas.2408731121
摘要

AI is now an integral part of everyday decision-making, assisting us in both routine and high-stakes choices. These AI models often learn from human behavior, assuming this training data is unbiased. However, we report five studies that show that people change their behavior to instill desired routines into AI, indicating this assumption is invalid. To show this behavioral shift, we recruited participants to play the ultimatum game, where they were asked to decide whether to accept proposals of monetary splits made by either other human participants or AI. Some participants were informed their choices would be used to train an AI proposer, while others did not receive this information. Across five experiments, we found that people modified their behavior to train AI to make fair proposals, regardless of whether they could directly benefit from the AI training. After completing this task once, participants were invited to complete this task again but were told their responses would not be used for AI training. People who had previously trained AI persisted with this behavioral shift, indicating that the new behavioral routine had become habitual. This work demonstrates that using human behavior as training data has more consequences than previously thought since it can engender AI to perpetuate human biases and cause people to form habits that deviate from how they would normally act. Therefore, this work underscores a problem for AI algorithms that aim to learn unbiased representations of human preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拥有八根情丝完成签到 ,获得积分10
2秒前
2秒前
爆米花应助稳重的书兰采纳,获得10
2秒前
丙泊酚完成签到,获得积分10
2秒前
3秒前
genomed应助小丘2024采纳,获得10
5秒前
zhouleiwang发布了新的文献求助10
6秒前
斯文败类应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
丙泊酚发布了新的文献求助10
8秒前
ding应助炒栗子采纳,获得10
9秒前
林夕发布了新的文献求助10
10秒前
11秒前
852应助害羞外套采纳,获得10
15秒前
23秒前
23秒前
orixero应助阿敲采纳,获得10
24秒前
有丝分裂吉完成签到,获得积分10
24秒前
24秒前
牛奶发布了新的文献求助10
28秒前
张咸鱼完成签到 ,获得积分10
30秒前
瑾昭发布了新的文献求助10
31秒前
星星完成签到,获得积分10
32秒前
33秒前
34秒前
刘珊妹完成签到,获得积分10
35秒前
NexusExplorer应助郜雨寒采纳,获得10
39秒前
闹心发布了新的文献求助10
40秒前
40秒前
听风发布了新的文献求助50
42秒前
炒栗子发布了新的文献求助10
44秒前
运气爆棚完成签到,获得积分10
48秒前
49秒前
勤恳的德地完成签到 ,获得积分10
49秒前
kk完成签到 ,获得积分10
52秒前
52秒前
55秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139336
求助须知:如何正确求助?哪些是违规求助? 2790244
关于积分的说明 7794607
捐赠科研通 2446679
什么是DOI,文献DOI怎么找? 1301314
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109