已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: A multicentre, retrospective cohort study

医学 乳腺癌 工作队 回顾性队列研究 队列 化疗 癌症 内科学 肿瘤科 新辅助治疗 队列研究 完全响应 放射科 公共行政 政治学
作者
Yu Liu,Ying Wang,Yuxiang Wang,Yu Xie,Yanfen Cui,Senwen Feng,Mengxia Yao,Bingjiang Qiu,Wenqian Shen,Dong Chen,Guoqing Du,Xin Chen,Zaiyi Liu,Zhenhui Li,Xiaotang Yang,Changhong Liang,Lei Wu
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:52: 101562-101562 被引量:32
标识
DOI:10.1016/j.eclinm.2022.101562
摘要

Summary

Background

Early prediction of treatment response to neoadjuvant chemotherapy (NACT) in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer can facilitate timely adjustment of treatment regimens. We aimed to develop and validate a Siamese multi-task network (SMTN) for predicting pathological complete response (pCR) based on longitudinal ultrasound images at the early stage of NACT.

Methods

In this multicentre, retrospective cohort study, a total of 393 patients with biopsy-proven HER2-positive breast cancer were retrospectively enrolled from three hospitals in china between December 16, 2013 and March 05, 2021, and allocated into a training cohort and two external validation cohorts. Patients receiving full cycles of NACT and with surgical pathological results available were eligible for inclusion. The key exclusion criteria were missing ultrasound images and/or clinicopathological characteristics. The proposed SMTN consists of two subnetworks that could be joined at multiple layers, which allowed for the integration of multi-scale features and extraction of dynamic information from longitudinal ultrasound images before and after the first /second cycles of NACT. We constructed the clinical model as a baseline using multivariable logistic regression analysis. Then the performance of SMTN was evaluated and compared with the clinical model.

Findings

The training cohort, comprising 215 patients, were selected from Yunnan Cancer Hospital. The two independent external validation cohorts, comprising 95 and 83 patients, were selected from Guangdong Provincial People's Hospital, and Shanxi Cancer Hospital, respectively. The SMTN yielded an area under the receiver operating characteristic curve (AUC) values of 0.986 (95% CI: 0.977–0.995), 0.902 (95%CI: 0.856–0.948), and 0.957 (95%CI: 0.924–0.990) in the training cohort and two external validation cohorts, respectively, which were significantly higher than that those of the clinical model (AUC: 0.524–0.588, Pall < 0.05). The AUCs values of the SMTN within the anti-HER2 therapy subgroups were 0.833-0.972 in the two external validation cohorts. Moreover, 272 of 279 (97.5%) non-pCR patients (159 of 160 (99.4%), 53 of 54 (98.1%), and 60 of 65 (92.3%) in the training and two external validation cohorts, respectively) were successfully identified by the SMTN, suggesting that they could benefit from regime adjustment at the early-stage of NACT.

Interpretation

The SMTN was able to predict pCR in the early-stage of NACT for HER2-positive breast cancer patients, which could guide clinicians in adjusting treatment regimes.

Funding

Key-Area Research and Development Program of Guangdong Province (No.2021B0101420006); National Natural Science Foundation of China (No.82071892, 82171920); Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (No.2022B1212010011); the National Science Foundation for Young Scientists of China (No.82102019, 82001986); Project Funded by China Postdoctoral Science Foundation (No.2020M682643); the Outstanding Youth Science Foundation of Yunnan Basic Research Project (202101AW070001); Scientific research fund project of Department of Education of Yunnan Province(2022J0249). Science and technology Projects in Guangzhou (202201020001;202201010513); High-level Hospital Construction Project (DFJH201805, DFJHBF202105).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
肖易应助xiaolong采纳,获得10
3秒前
汉堡包应助车鹭洋采纳,获得10
3秒前
黄毛虎完成签到 ,获得积分0
4秒前
FashionBoy应助有钱采纳,获得10
6秒前
darqin完成签到 ,获得积分10
6秒前
端庄的如花完成签到,获得积分10
6秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得30
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
怕孤独的忆南完成签到,获得积分10
9秒前
9秒前
啦啦啦发布了新的文献求助10
9秒前
科研通AI2S应助creepppp采纳,获得10
9秒前
科研通AI6应助饱满的晓凡采纳,获得10
10秒前
无聊的迎波完成签到,获得积分20
12秒前
亲爱的安德烈完成签到,获得积分10
12秒前
穷鬼爬行发布了新的文献求助50
14秒前
彭于晏应助啦啦啦采纳,获得10
15秒前
肖易应助xiaolong采纳,获得10
15秒前
斯文梦寒完成签到 ,获得积分10
16秒前
17秒前
然来溪完成签到 ,获得积分10
17秒前
18秒前
18秒前
sunny66cai完成签到,获得积分10
18秒前
隔壁巷子里的劉完成签到 ,获得积分10
21秒前
goodice完成签到,获得积分20
22秒前
机灵天亦完成签到,获得积分10
22秒前
22秒前
sunny66cai发布了新的文献求助10
23秒前
liwenchao完成签到,获得积分10
23秒前
土豪的摩托完成签到 ,获得积分10
23秒前
机灵天亦发布了新的文献求助10
25秒前
goodice发布了新的文献求助30
26秒前
科研通AI5应助liwenchao采纳,获得10
29秒前
张张完成签到,获得积分10
32秒前
mr完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614