清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: A multicentre, retrospective cohort study

医学 乳腺癌 工作队 回顾性队列研究 队列 化疗 癌症 内科学 肿瘤科 新辅助治疗 队列研究 完全响应 放射科 公共行政 政治学
作者
Yu Liu,Ying Wang,Yuxiang Wang,Yu Xie,Yanfen Cui,Senwen Feng,Mengxia Yao,Bingjiang Qiu,Wenqian Shen,Dong Chen,Guoqing Du,Xin Chen,Zaiyi Liu,Zhenhui Li,Xiaotang Yang,Changhong Liang,Lei Wu
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:52: 101562-101562 被引量:32
标识
DOI:10.1016/j.eclinm.2022.101562
摘要

Summary

Background

Early prediction of treatment response to neoadjuvant chemotherapy (NACT) in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer can facilitate timely adjustment of treatment regimens. We aimed to develop and validate a Siamese multi-task network (SMTN) for predicting pathological complete response (pCR) based on longitudinal ultrasound images at the early stage of NACT.

Methods

In this multicentre, retrospective cohort study, a total of 393 patients with biopsy-proven HER2-positive breast cancer were retrospectively enrolled from three hospitals in china between December 16, 2013 and March 05, 2021, and allocated into a training cohort and two external validation cohorts. Patients receiving full cycles of NACT and with surgical pathological results available were eligible for inclusion. The key exclusion criteria were missing ultrasound images and/or clinicopathological characteristics. The proposed SMTN consists of two subnetworks that could be joined at multiple layers, which allowed for the integration of multi-scale features and extraction of dynamic information from longitudinal ultrasound images before and after the first /second cycles of NACT. We constructed the clinical model as a baseline using multivariable logistic regression analysis. Then the performance of SMTN was evaluated and compared with the clinical model.

Findings

The training cohort, comprising 215 patients, were selected from Yunnan Cancer Hospital. The two independent external validation cohorts, comprising 95 and 83 patients, were selected from Guangdong Provincial People's Hospital, and Shanxi Cancer Hospital, respectively. The SMTN yielded an area under the receiver operating characteristic curve (AUC) values of 0.986 (95% CI: 0.977–0.995), 0.902 (95%CI: 0.856–0.948), and 0.957 (95%CI: 0.924–0.990) in the training cohort and two external validation cohorts, respectively, which were significantly higher than that those of the clinical model (AUC: 0.524–0.588, Pall < 0.05). The AUCs values of the SMTN within the anti-HER2 therapy subgroups were 0.833-0.972 in the two external validation cohorts. Moreover, 272 of 279 (97.5%) non-pCR patients (159 of 160 (99.4%), 53 of 54 (98.1%), and 60 of 65 (92.3%) in the training and two external validation cohorts, respectively) were successfully identified by the SMTN, suggesting that they could benefit from regime adjustment at the early-stage of NACT.

Interpretation

The SMTN was able to predict pCR in the early-stage of NACT for HER2-positive breast cancer patients, which could guide clinicians in adjusting treatment regimes.

Funding

Key-Area Research and Development Program of Guangdong Province (No.2021B0101420006); National Natural Science Foundation of China (No.82071892, 82171920); Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (No.2022B1212010011); the National Science Foundation for Young Scientists of China (No.82102019, 82001986); Project Funded by China Postdoctoral Science Foundation (No.2020M682643); the Outstanding Youth Science Foundation of Yunnan Basic Research Project (202101AW070001); Scientific research fund project of Department of Education of Yunnan Province(2022J0249). Science and technology Projects in Guangzhou (202201020001;202201010513); High-level Hospital Construction Project (DFJH201805, DFJHBF202105).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
24秒前
27秒前
蒙面侠完成签到 ,获得积分10
30秒前
CC发布了新的文献求助10
32秒前
哈哈哈完成签到 ,获得积分10
38秒前
王世卉完成签到,获得积分10
41秒前
ccyy完成签到 ,获得积分10
42秒前
3120221053完成签到,获得积分10
1分钟前
是玥玥啊完成签到 ,获得积分10
1分钟前
小新小新完成签到 ,获得积分10
1分钟前
Qvby3完成签到 ,获得积分10
1分钟前
英姑应助ceeray23采纳,获得20
1分钟前
imica完成签到 ,获得积分10
1分钟前
bkagyin应助ceeray23采纳,获得20
2分钟前
Ralph完成签到,获得积分10
2分钟前
科研搬运工完成签到,获得积分0
2分钟前
binbinbin发布了新的文献求助20
2分钟前
binbinbin完成签到,获得积分20
2分钟前
cy完成签到,获得积分10
3分钟前
满意的伊完成签到,获得积分10
3分钟前
3分钟前
John完成签到 ,获得积分10
3分钟前
蔡从安完成签到,获得积分20
3分钟前
傲娇而又骄傲完成签到 ,获得积分10
3分钟前
精明晓刚发布了新的文献求助10
4分钟前
星辰大海应助精明晓刚采纳,获得10
4分钟前
Joeswith完成签到,获得积分10
4分钟前
优美的明辉完成签到 ,获得积分10
4分钟前
帅气的沧海完成签到 ,获得积分10
4分钟前
jlwang完成签到,获得积分10
5分钟前
5分钟前
彦嘉发布了新的文献求助10
5分钟前
宇文雨文完成签到 ,获得积分10
5分钟前
5分钟前
末末完成签到 ,获得积分10
6分钟前
6分钟前
ceeray23发布了新的文献求助20
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
笨笨完成签到 ,获得积分10
6分钟前
芒芒发paper完成签到 ,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990568
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234