Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: A multicentre, retrospective cohort study

医学 乳腺癌 工作队 回顾性队列研究 队列 化疗 癌症 内科学 肿瘤科 新辅助治疗 队列研究 完全响应 放射科 公共行政 政治学
作者
Yu Liu,Ying Wang,Yuxiang Wang,Yu Xie,Yanfen Cui,Senwen Feng,Mengxia Yao,Bingjiang Qiu,Wenqian Shen,Dong Chen,Guoqing Du,Xin Chen,Zaiyi Liu,Zhenhui Li,Xiaotang Yang,Changhong Liang,Lei Wu
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:52: 101562-101562 被引量:32
标识
DOI:10.1016/j.eclinm.2022.101562
摘要

Summary

Background

Early prediction of treatment response to neoadjuvant chemotherapy (NACT) in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer can facilitate timely adjustment of treatment regimens. We aimed to develop and validate a Siamese multi-task network (SMTN) for predicting pathological complete response (pCR) based on longitudinal ultrasound images at the early stage of NACT.

Methods

In this multicentre, retrospective cohort study, a total of 393 patients with biopsy-proven HER2-positive breast cancer were retrospectively enrolled from three hospitals in china between December 16, 2013 and March 05, 2021, and allocated into a training cohort and two external validation cohorts. Patients receiving full cycles of NACT and with surgical pathological results available were eligible for inclusion. The key exclusion criteria were missing ultrasound images and/or clinicopathological characteristics. The proposed SMTN consists of two subnetworks that could be joined at multiple layers, which allowed for the integration of multi-scale features and extraction of dynamic information from longitudinal ultrasound images before and after the first /second cycles of NACT. We constructed the clinical model as a baseline using multivariable logistic regression analysis. Then the performance of SMTN was evaluated and compared with the clinical model.

Findings

The training cohort, comprising 215 patients, were selected from Yunnan Cancer Hospital. The two independent external validation cohorts, comprising 95 and 83 patients, were selected from Guangdong Provincial People's Hospital, and Shanxi Cancer Hospital, respectively. The SMTN yielded an area under the receiver operating characteristic curve (AUC) values of 0.986 (95% CI: 0.977–0.995), 0.902 (95%CI: 0.856–0.948), and 0.957 (95%CI: 0.924–0.990) in the training cohort and two external validation cohorts, respectively, which were significantly higher than that those of the clinical model (AUC: 0.524–0.588, Pall < 0.05). The AUCs values of the SMTN within the anti-HER2 therapy subgroups were 0.833-0.972 in the two external validation cohorts. Moreover, 272 of 279 (97.5%) non-pCR patients (159 of 160 (99.4%), 53 of 54 (98.1%), and 60 of 65 (92.3%) in the training and two external validation cohorts, respectively) were successfully identified by the SMTN, suggesting that they could benefit from regime adjustment at the early-stage of NACT.

Interpretation

The SMTN was able to predict pCR in the early-stage of NACT for HER2-positive breast cancer patients, which could guide clinicians in adjusting treatment regimes.

Funding

Key-Area Research and Development Program of Guangdong Province (No.2021B0101420006); National Natural Science Foundation of China (No.82071892, 82171920); Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (No.2022B1212010011); the National Science Foundation for Young Scientists of China (No.82102019, 82001986); Project Funded by China Postdoctoral Science Foundation (No.2020M682643); the Outstanding Youth Science Foundation of Yunnan Basic Research Project (202101AW070001); Scientific research fund project of Department of Education of Yunnan Province(2022J0249). Science and technology Projects in Guangzhou (202201020001;202201010513); High-level Hospital Construction Project (DFJH201805, DFJHBF202105).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥完成签到 ,获得积分10
2秒前
键盘车神完成签到 ,获得积分10
2秒前
咳欧克完成签到,获得积分20
3秒前
3秒前
12秒前
辛辛应助科研通管家采纳,获得10
16秒前
辛辛应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
辛辛应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
sskk发布了新的文献求助10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
16秒前
18秒前
嗯嗯发布了新的文献求助10
19秒前
个性跳跳糖完成签到,获得积分10
19秒前
祎橘完成签到 ,获得积分10
22秒前
昏睡的白桃完成签到,获得积分10
22秒前
关中人完成签到,获得积分10
23秒前
舒服的山槐完成签到,获得积分10
23秒前
......发布了新的文献求助10
24秒前
xyh完成签到,获得积分10
25秒前
Sea_U应助意安在采纳,获得10
25秒前
happyccch完成签到,获得积分10
27秒前
上官若男应助学术蝗虫采纳,获得10
29秒前
王圆圆完成签到 ,获得积分10
29秒前
NexusExplorer应助lucky采纳,获得10
31秒前
ding应助sdl采纳,获得10
31秒前
FashionBoy应助......采纳,获得10
31秒前
orixero应助嗯嗯采纳,获得10
33秒前
Hello应助鸳鸯不是鸳鸯采纳,获得10
33秒前
frederick完成签到,获得积分10
37秒前
37秒前
阿飘应助submarines采纳,获得20
38秒前
39秒前
40秒前
爱蕊咖完成签到 ,获得积分10
42秒前
学术蝗虫完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774441
求助须知:如何正确求助?哪些是违规求助? 3320155
关于积分的说明 10198712
捐赠科研通 3034786
什么是DOI,文献DOI怎么找? 1665211
邀请新用户注册赠送积分活动 796703
科研通“疑难数据库(出版商)”最低求助积分说明 757552