氧化应激
活力测定
炎症
药理学
化学
下调和上调
结肠炎
MTT法
程序性细胞死亡
免疫印迹
癌症研究
细胞
免疫学
生物
细胞凋亡
生物化学
基因
作者
Fengxu Chi,Guangquan Zhang,Niansheng Ren,Jian Zhang,Fei Du,Xiyan Zheng,Cong Zhang,Zhiqun Lin,Ruixi Li,Xianjie Shi,Yuekun Zhu
标识
DOI:10.1016/j.intimp.2022.109117
摘要
Oxidative stress, cell pyroptosis and inflammation are considered as important pathogenic factors for ulcerative colitis (UC) development, and the traditional anti-alcoholism drug disulfiram (DSF) has recently been reported to exert its regulating effects on all the above cellular functions, which makes DSF as ideal therapeutic agent for UC treatment, but this issue has not been fully studied.Dextran sulfate sodium (DSS)-induced animal models in C57BL/6J mice and lipopolysaccharide (LPS)-induced cellular models in colonic cell lines (HT-29 and Caco-2) for UC were respectively established. Cytokine secretion was determined by ELISA. Cell viability and proliferation were evaluated by MTT assay and EdU assay. Real-Time qPCR, Western Blot, immunofluorescent staining assay and immunohistochemistry (IHC) were employed to evaluate gene expressions. The correlations of the genes in the clinical tissues were analyzed by using the Pearson Correlation analysis.DSF restrained oxidative stress, pyroptotic cell death and cellular inflammation in UC models in vitro and in vivo, and elimination of Reactive Oxygen Species (ROS) by N-acetyl-l-cysteine (NAC) rescued cell viability in LPS-treated colonic cells (HT-29 and Caco-2). Further experiments suggested that a glycogen synthase kinase-3β (GSK-3β)/Nrf2/NLRP3 signaling cascade played critical role in this process. Mechanistically, DSF downregulated GSK-3β and NLRP3, whereas upregulated Nrf2 in LPS-treated colonic cells. Also, the regulating effects of DSF on Nrf2 and NLRP3 were abrogated by upregulating GSK-3β. Moreover, upregulation of GSK-3β abolished the protective effects of DSF on LPS-treated colonic cells.Taken together, data of this study indicated that DSF restrained oxidative damages-related pyroptotic cell death and inflammation via regulating the GSK-3β/Nrf2/NLRP3 pathway, leading to the suppression of LPS-induced UC development.
科研通智能强力驱动
Strongly Powered by AbleSci AI