Exploring Semantic Relations for Social Media Sentiment Analysis

计算机科学 情绪分析 图像(数学) 名词 形容词 人工智能 情报检索 自然语言处理
作者
Jiandian Zeng,Jiantao Zhou,Caishi Huang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2382-2394 被引量:14
标识
DOI:10.1109/taslp.2023.3285238
摘要

With the massive social media data available online, the conventional single modality emotion classification has developed into more complex models of multimodal sentiment analysis. Most existing works simply extracted image features at a coarse level, resulting in the absence of partially detailed visual features. Besides, social media data usually contain multiple images, while existing works considered a single image case and used only one image for representing visual features. In fact, it is nontrivial to extend the single image case to the multiple images case, due to the complex relations among multiple images. To solve the above issues, in this paper, we propose a G ated F usion S emantic R elation (GFSR) network to explore semantic relations for social media sentiment analysis. In addition to inter-relations between visual and textual modalities, we also exploit intra-relations among multiple images, potentially improving the sentiment analysis performance. Specifically, we design a gated fusion network to fuse global image embeddings and the corresponding local Adjective Noun Pair (ANP) embeddings. Then, apart from textual relations and cross-modal relations, we employ the multi-head cross attention mechanism between images and ANPs to capture similar semantic contents. Eventually, the updated textual and visual representations are concatenated for the final sentiment prediction. Extensive experiments are conducted on real-world Yelp and Flickr30k datasets, showing that our GFSR can improve about 0.10% to 3.66% in terms of accuracy on the Yelp dataset with multiple images, and achieve the best accuracy for two classes and the best macro F1 for three classes on the Flickr30k dataset with a single image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一投就中发布了新的文献求助10
1秒前
刘柳发布了新的文献求助10
1秒前
顺利的蛋挞关注了科研通微信公众号
2秒前
Juvianne发布了新的文献求助10
3秒前
3秒前
3秒前
无辜的丹雪应助惠1采纳,获得30
4秒前
4秒前
CipherSage应助111采纳,获得10
5秒前
Owen应助111采纳,获得10
5秒前
甜蜜寄文发布了新的文献求助10
5秒前
5秒前
guangshuang发布了新的文献求助10
6秒前
慕青应助xc采纳,获得30
6秒前
韩修杰发布了新的文献求助10
7秒前
7秒前
lyl发布了新的文献求助10
8秒前
8秒前
coin完成签到,获得积分10
8秒前
呆一起完成签到,获得积分10
9秒前
9秒前
Hiiiiii完成签到,获得积分10
9秒前
9秒前
9秒前
SciGPT应助聪慧若风采纳,获得10
9秒前
10秒前
zwl发布了新的文献求助10
11秒前
朴素剑心发布了新的文献求助10
11秒前
Magic1987发布了新的文献求助30
11秒前
12秒前
12秒前
科研民工完成签到,获得积分10
12秒前
12秒前
古德day发布了新的文献求助10
13秒前
等风来LYY完成签到,获得积分10
13秒前
14秒前
guangshuang完成签到,获得积分10
15秒前
威武白桃发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901