Joint liver and hepatic lesion segmentation in MRI using a hybrid CNN with transformer layers

分割 计算机科学 人工智能 磁共振成像 深度学习 卷积神经网络 模式识别(心理学) 模态(人机交互) 图像分割 放射科 医学
作者
Georg Hille,Shubham Agrawal,Pavan Tummala,Christian Wybranski,Maciej Pech,Alexey Surov,Sylvia Saalfeld
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107647-107647 被引量:29
标识
DOI:10.1016/j.cmpb.2023.107647
摘要

Backgound and Objective: Deep learning-based segmentation of the liver and hepatic lesions therein steadily gains relevance in clinical practice due to the increasing incidence of liver cancer each year. Whereas various network variants with overall promising results in the field of medical image segmentation have been successfully developed over the last years, almost all of them struggle with the challenge of accurately segmenting hepatic lesions in magnetic resonance imaging (MRI). This led to the idea of combining elements of convolutional and transformer-based architectures to overcome the existing limitations.This work presents a hybrid network called SWTR-Unet, consisting of a pretrained ResNet, transformer blocks as well as a common Unet-style decoder path. This network was primarily applied to single-modality non-contrast-enhanced liver MRI and additionally to the publicly available computed tomography (CT) data of the liver tumor segmentation (LiTS) challenge to verify the applicability on other modalities. For a broader evaluation, multiple state-of-the-art networks were implemented and applied, ensuring direct comparability. Furthermore, correlation analysis and an ablation study were carried out, to investigate various influencing factors on the segmentation accuracy of the presented method.With Dice similarity scores of averaged 98±2% for liver and 81±28% lesion segmentation on the MRI dataset and 97±2% and 79±25%, respectively on the CT dataset, the proposed SWTR-Unet proved to be a precise approach for liver and hepatic lesion segmentation with state-of-the-art results for MRI and competing accuracy in CT imaging.The achieved segmentation accuracy was found to be on par with manually performed expert segmentations as indicated by inter-observer variabilities for liver lesion segmentation. In conclusion, the presented method could save valuable time and resources in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓矢完成签到 ,获得积分10
刚刚
洋芋片发布了新的文献求助10
1秒前
多情的续完成签到,获得积分10
1秒前
3秒前
Samar发布了新的文献求助30
3秒前
3秒前
laura发布了新的文献求助10
6秒前
Cedric完成签到,获得积分10
7秒前
乐乐应助dxd小郭采纳,获得10
12秒前
12秒前
13秒前
小葫芦完成签到 ,获得积分10
17秒前
勤奋幻天完成签到 ,获得积分10
19秒前
北方小镇完成签到 ,获得积分10
20秒前
21秒前
敏感臻完成签到,获得积分10
21秒前
22秒前
杜华詹发布了新的文献求助10
23秒前
斯文败类应助不安囧采纳,获得10
24秒前
无花果应助杜华詹采纳,获得10
30秒前
TillySss完成签到,获得积分10
31秒前
31秒前
洋芋片完成签到,获得积分10
35秒前
研友_VZG7GZ应助pragmatic采纳,获得10
37秒前
40秒前
李健应助佳期如梦采纳,获得10
40秒前
可乐加冰完成签到,获得积分10
42秒前
42秒前
43秒前
桐桐应助科研通管家采纳,获得10
44秒前
小蘑菇应助科研通管家采纳,获得10
44秒前
44秒前
桐桐应助科研通管家采纳,获得10
44秒前
传奇3应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
CNAxiaozhu7应助科研通管家采纳,获得10
45秒前
45秒前
45秒前
45秒前
123发布了新的文献求助10
46秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464340
求助须知:如何正确求助?哪些是违规求助? 3057669
关于积分的说明 9058016
捐赠科研通 2747686
什么是DOI,文献DOI怎么找? 1507556
科研通“疑难数据库(出版商)”最低求助积分说明 696564
邀请新用户注册赠送积分活动 696117