High-Throughput Prediction of Metal-Embedded Complex Properties with a New GNN-Based Metal Attention Framework

吞吐量 金属 计算机科学 材料科学 冶金 操作系统 无线
作者
X Zhao,Bao Wang,Kun Zhou,Jiangjiexing Wu,Kai Song
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c02163
摘要

Metal-embedded complexes (MECs), including transition metal complexes (TMCs) and metal-organic frameworks (MOFs), are important in catalysis, materials science, and molecular devices due to their unique metal atom centrality and complex coordination environments. However, modeling and predicting their properties accurately is challenging. A new metal attention (MA) framework for graph neural networks (GNNs) was proposed to address the limitations of traditional methods, which fail to differentiate core coordination structures from ordinary covalent bonds. This MA framework converts heterogeneous graphs of complexes into homogeneous ones with distinct metal features by highlighting key metal-feature coordination through hierarchical pooling and a metal cross-attention. To assess its performance, 11 widely used GNN algorithms, three of which are heterogeneous, were compared. Experimental results indicate significant improvements in accuracy: an average of 32.07% for predicting TMC properties and up to 23.01% for MOF CO2 absorption. Moreover, tests on the framework's robustness regarding data set size variation and comparison with a larger non-MA model show that the enhanced performance stems from the architecture, not merely increasing model capacity. The MA framework's potential in predicting metal complex properties offers a potent statistical tool for optimizing and designing new materials like catalysts and gas storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潺潺流水完成签到,获得积分10
1秒前
1秒前
1秒前
倦鸟归林发布了新的文献求助10
2秒前
Jerry完成签到,获得积分10
2秒前
gffh发布了新的文献求助10
2秒前
askfhasihfa发布了新的文献求助10
2秒前
懵懂的半蕾完成签到,获得积分10
3秒前
3秒前
Rain发布了新的文献求助10
3秒前
万能图书馆应助JasonSun采纳,获得10
4秒前
舒心谷雪完成签到 ,获得积分10
4秒前
王大胖完成签到,获得积分20
4秒前
meikoo发布了新的文献求助10
5秒前
ei123完成签到,获得积分10
5秒前
5秒前
调研昵称发布了新的文献求助10
5秒前
贝利亚完成签到,获得积分10
5秒前
善学以致用应助woodheart采纳,获得10
6秒前
6秒前
6秒前
天真的半莲完成签到,获得积分10
6秒前
6秒前
坚定蓝天关注了科研通微信公众号
7秒前
微笑的怀寒完成签到,获得积分10
7秒前
7秒前
shuenghei完成签到,获得积分10
8秒前
眠茶醒药发布了新的文献求助10
9秒前
9秒前
简单迎夏完成签到,获得积分10
9秒前
Jello发布了新的文献求助10
10秒前
田様应助王大胖采纳,获得10
11秒前
科研通AI5应助zzx采纳,获得10
11秒前
sss发布了新的文献求助10
11秒前
11秒前
yukang完成签到,获得积分10
11秒前
12秒前
JamesPei应助忧虑的巧曼采纳,获得10
12秒前
了大憨完成签到 ,获得积分10
12秒前
jphu发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514181
求助须知:如何正确求助?哪些是违规求助? 3096485
关于积分的说明 9231985
捐赠科研通 2791574
什么是DOI,文献DOI怎么找? 1531965
邀请新用户注册赠送积分活动 711694
科研通“疑难数据库(出版商)”最低求助积分说明 706954