Liver Elastography-based Risk Score for Predicting Hepatocellular Carcinoma Risk

医学 瞬态弹性成像 肝细胞癌 队列 内科学 弗雷明翰风险评分 列线图 乙型肝炎病毒 肿瘤科 胃肠病学 纤维化 疾病 肝纤维化 免疫学 病毒
作者
Chan Tian,Chunyan Ye,Haiyan Guo,Kun Ping Lu,Juan Yang,Xinghuan Wang,Xinyuan Ge,Chengxiao Yu,Jing Lü,Longfeng Jiang,Qun Zhang,Ci Song
出处
期刊:Journal of the National Cancer Institute [Oxford University Press]
被引量:1
标识
DOI:10.1093/jnci/djae304
摘要

Abstract Background & Aims Liver stiffness measurement (LSM) via vibration-controlled transient elastography (VCTE) accurately assesses fibrosis. We aimed to develop a universal risk score for predicting hepatocellular carcinoma (HCC) development in patients with chronic hepatitis. Methods We systematically selected predictors and developed the risk prediction model (HCC-LSM) in the HBV training cohort (n = 2,251, median follow-up of 3.2 years). The HCC-LSM model was validated in an independent HBV validation cohort (n = 1,191, median follow-up of 5.7 years) and a non-viral chronic liver disease (CLD) extrapolation cohort (n = 1,189, median follow-up of 3.3 years). A HCC risk score was then constructed based on a nomogram. An online risk evaluation tool (LEBER) was developed using ChatGPT4.0. Results Eight routinely available predictors were identified, with LSM levels showing a significant dose-response relationship with HCC incidence (P < .001 by log-rank test). The HCC-LSM model exhibited excellent predictive performance in the HBV training cohort (C-index = 0.866) and the HBV validation cohort (C-index = 0.852), with good performance in the extrapolation CLD cohort (C-index = 0.769). The model demonstrated significantly superior discrimination compared to six previous models across the three cohorts. Cut-off values of 87.2 and 121.1 for the HCC-LSM score categorized participants into low-, medium-, and high-risk groups. An online public risk evaluation tool (LEBER; http://ccra.njmu.edu.cn/LEBER669.html) was developed to facilitate the use of HCC-LSM. Conclusion The accessible, reliable risk score based on LSM accurately predicted HCC development in patients with chronic hepatitis, providing an effective risk assessment tool for HCC surveillance strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助成就的小熊猫采纳,获得10
刚刚
刚刚
waterclouds完成签到 ,获得积分10
刚刚
圆圈儿完成签到,获得积分10
刚刚
司空剑封完成签到,获得积分10
1秒前
1秒前
海棠yiyi完成签到,获得积分10
1秒前
1秒前
梁小鑫发布了新的文献求助10
1秒前
Jenny应助圈圈采纳,获得10
2秒前
内向青文完成签到,获得积分10
2秒前
lefora完成签到,获得积分10
2秒前
丰知然应助CO2采纳,获得10
3秒前
Zhihu完成签到,获得积分10
3秒前
feng完成签到,获得积分10
4秒前
4秒前
美丽稀完成签到,获得积分10
5秒前
PXY应助屁王采纳,获得10
5秒前
sunburst完成签到,获得积分10
5秒前
狼主完成签到 ,获得积分10
5秒前
吕亦寒完成签到,获得积分10
5秒前
junzilan发布了新的文献求助10
6秒前
ZL发布了新的文献求助10
6秒前
6秒前
亻鱼完成签到,获得积分10
6秒前
超级蘑菇完成签到 ,获得积分10
7秒前
7秒前
7秒前
congguitar完成签到,获得积分10
7秒前
8秒前
limof完成签到,获得积分20
8秒前
跳跃聪健发布了新的文献求助10
8秒前
168521kf完成签到,获得积分10
8秒前
9秒前
Avatar完成签到,获得积分10
9秒前
9秒前
小田完成签到,获得积分10
10秒前
JJJ应助大气沅采纳,获得10
10秒前
11秒前
kydd驳回了桐桐应助
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740