干细胞
间充质干细胞
生物
慢性阻塞性肺病
肺
免疫学
肺功能
脐带
医学
内科学
细胞生物学
作者
Xiao Zhang,Ting Hu,Xinjuan Yu,Tianying Wang,Lei Jiang,Lixin Sun,Wei Han
出处
期刊:Stem Cells
[Wiley]
日期:2024-01-27
卷期号:42 (4): 346-359
标识
DOI:10.1093/stmcls/sxae007
摘要
The use of human umbilical cord mesenchymal stem cells (UC-MSCs) has shown promise in improving the pathophysiological characteristics of rats with chronic obstructive pulmonary disease (COPD). However, more research is needed to understand the exact mechanism behind their therapeutic effects and their impact on lung microbiota.To investigate this, rats were randomly assigned to one of 3 groups: Control, COPD + vehicle, and COPD + UC-MSCs group. Lung function changes after UC-MSCs therapy were evaluated weekly for 6 weeks. Additionally, lactate dehydrogenase (LDH), TNF (tumor necrosis factor)-α, IL (interleukin)-6, and IL-1β level in bronchoalveolar lavage fluid (BALF) were analyzed. Arterial blood gas and weight were recorded. Hematoxylin and eosin (HE) staining was used to examine lung pathology, while changes in the lung microbiota were evaluated through 16S rRNA sequencing.The administration of UC-MSCs in rats led to a progressive amelioration of COPD, as demonstrated by enhanced lung function and reduced inflammatory response. UC-MSCs treatment significantly altered the structure and diversity of the lung microbiota, effectively preventing microbiota dysbiosis. This was achieved by increasing the abundance of Bacteroidetes and reducing the levels of Proteobacteria. Additionally, treatment with UC-MSCs reduced the activation of pathways associated with COPD, including microbial metabolism, ABC transporters, and Quorum sensing. The group of UC-MSCs showed increased metabolic pathways, such as amino acid biosynthesis, purine metabolism, starch and sucrose metabolism, and biosynthesis of secondary metabolites, compared to the COPD group.The use of UC-MSCs was found to reduce inflammation and improve lung function in rats with COPD. The mechanism may be related to the lung microbiota, as UC-MSCs improved the communities of lung microbiota and regulated dysregulated metabolic pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI