ORSI Salient Object Detection via Progressive Semantic Flow and Uncertainty-aware Refinement

计算机科学 突出 对象(语法) 目标检测 人工智能 数据挖掘 模式识别(心理学)
作者
Yueqian Quan,Honghui Xu,Renfang Wang,Qiu Guan,Jianwei Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2024.3359684
摘要

With the prosperity of deep learning techniques, salient object detection in remote sensing images (RSI-SOD) is concomitantly in full flourishing. However, due to the inherent challenges such as uncertainty in object quantities and scales, cluttered backgrounds, and blurred edges arising from shadows, most current approaches struggle for salient feature learning with the aid of heavy model architecture, yet often result in barely satisfactory performance. Some methods compromise model complexity to improve efficiency, albeit with significantly degraded results. To earn a satisfactory balance of efficacy and efficiency, we propose a new network for RSI-SOD, namely SFANet, based on progressive semantic flow and uncertainty-aware refinement. Specifically, we design a global semantic enhancement block (GSEB) to reduce background interference and accurately localize salient objects of varying quantities and scales, which further consists of three modularized components, i.e., semantic extraction module (SEM), interscale fusion module (IFM), and deep semantic graph-inference module (DSGM). SEM together with IFM contributes to the effective aggregation of multi-scale contexts by extracting fused and progressive semantic cues. DSGM performs semantic inference to better localize salient objects with irregularities in scale and topological structure. Furthermore, we present an uncertainty-aware refinement module (URM) to recognize salient objects in cluttered backgrounds and effectively suppress shadows. Extensive experiments are conducted on three RSI-SOD datasets, from which superior results can be achieved by our SFANet, outperforming the other cutting-edge methods. The code is available at https://github.com/ZhengJianwei2/SFANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到 ,获得积分10
1秒前
77完成签到,获得积分20
1秒前
lawrencewong发布了新的文献求助20
2秒前
3秒前
1005发布了新的文献求助10
3秒前
斯文败类应助zzd采纳,获得10
3秒前
4秒前
卡恩完成签到 ,获得积分10
4秒前
5秒前
6秒前
勤奋的蜗牛完成签到,获得积分20
7秒前
靓丽剑心发布了新的文献求助30
8秒前
8秒前
8秒前
9秒前
昏睡的魂幽完成签到,获得积分10
10秒前
10秒前
rye发布了新的文献求助10
10秒前
陈婷婷完成签到,获得积分10
10秒前
10秒前
幸福寒梅完成签到,获得积分10
10秒前
11秒前
CodeCraft应助LOMO采纳,获得10
13秒前
学业顺利发布了新的文献求助10
13秒前
小柒发布了新的文献求助10
13秒前
飘逸的靖巧完成签到,获得积分20
13秒前
15秒前
深情安青应助sensen采纳,获得10
15秒前
15秒前
小竹笋发布了新的文献求助10
15秒前
junjunyang完成签到,获得积分10
15秒前
16秒前
18秒前
CodeCraft应助唠叨的悟空采纳,获得10
18秒前
甜甜谷雪发布了新的文献求助10
18秒前
19秒前
19秒前
JohnBoy完成签到 ,获得积分10
19秒前
科研通AI2S应助HWJ采纳,获得10
20秒前
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170673
求助须知:如何正确求助?哪些是违规求助? 2821714
关于积分的说明 7936172
捐赠科研通 2482144
什么是DOI,文献DOI怎么找? 1322341
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608