已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

WOAD3QN-RP: An intelligent routing protocol in wireless sensor networks — A swarm intelligence and deep reinforcement learning based approach

计算机科学 路由协议 强化学习 适应性 无线传感器网络 分布式计算 计算机网络 能源消耗 群体智能 动态源路由 网络拓扑 链路状态路由协议 静态路由 地理路由 节点(物理) 布线(电子设计自动化) 人工智能 机器学习 粒子群优化 工程类 生态学 结构工程 电气工程 生物
作者
Xuan Yang,Jiaqi Yan,Desheng Wang,Yonggang Xu,Gang Hua
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:246: 123089-123089 被引量:4
标识
DOI:10.1016/j.eswa.2023.123089
摘要

Wireless Sensor Networks (WSN) are a crucial part of the Internet of Things (IoT), and research on WSN routing protocols has always been a hot topic in academia. However, traditional WSN routing protocols have limited utilization of available information during the routing decision process, leading to challenges such as insufficient adaptability to network topology changes, high communication delays, and short network lifetimes. To address these issues, this paper proposes an innovative intelligent routing algorithm WOAD3QN-RP, which cleverly integrates swarm intelligence algorithms and deep reinforcement learning. The WOAD3QN-RP not only effectively reduces delay but also balances energy consumption and flexibly adapts to changes in network topology, while simultaneously determining the optimal multi-hop path, effectively extending the lifetime of the network. Firstly, the WOAD3QN-RP algorithm employs the Whale Optimization Algorithm (WOA) to determine the optimal cluster heads (CHs). In the process of selecting CHs, the algorithm comprehensively considers key factors such as the residual energy of nodes, node distance, and communication delay, thereby significantly improving the accuracy and efficiency of CH selection, which contributes to better energy distribution and performance of the network. Secondly, in terms of multi-hop path selection, WOAD3QN-RP uses a dueling double deep Q-network (D3QN) to determine the optimal multi-hop path. Through utilizing neural networks to interact with the environment, intelligent agents are trained to learn routing policies to adapt to dynamic changes in the network topology and ensure the balance between energy consumption and multi-hop routing performance. Experimental results show that WOAD3QN-RP exhibits significant advantages over existing routing protocols in terms of network lifetime, energy efficiency, and communication delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
无律发布了新的文献求助100
3秒前
Ringobell完成签到,获得积分10
5秒前
英姑应助炙心采纳,获得10
5秒前
YuanbinMao应助魔幻的雪碧采纳,获得30
6秒前
ppppppp_76发布了新的文献求助10
7秒前
风茠住完成签到,获得积分20
8秒前
川川完成签到,获得积分10
9秒前
希望天下0贩的0应助林g采纳,获得10
11秒前
11秒前
makabakkkk发布了新的文献求助20
14秒前
17秒前
18秒前
啦啦完成签到 ,获得积分10
21秒前
22秒前
23秒前
23秒前
zz关注了科研通微信公众号
24秒前
go发布了新的文献求助10
24秒前
24秒前
25秒前
阿橘发布了新的文献求助10
26秒前
jkl完成签到 ,获得积分10
28秒前
科目三应助Yan采纳,获得10
28秒前
废寝忘食发布了新的文献求助10
29秒前
林g发布了新的文献求助10
29秒前
赵雪发布了新的文献求助10
29秒前
30秒前
我是老大应助go采纳,获得10
30秒前
30秒前
Orange应助宋十一采纳,获得10
30秒前
memory发布了新的文献求助10
31秒前
31秒前
柴子发布了新的文献求助30
36秒前
36秒前
37秒前
tkdzjr12345发布了新的文献求助10
37秒前
37秒前
kx完成签到 ,获得积分10
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229357
求助须知:如何正确求助?哪些是违规求助? 2877059
关于积分的说明 8197722
捐赠科研通 2544406
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749