Multimodal deep learning water level forecasting model for multiscale drought alert in Feiyun River basin

计算机科学 深度学习 人工智能 机器学习 均方误差 数据挖掘 环境科学 统计 数学
作者
Rui Dai,Wanliang Wang,Zhang Ren-gong,Lijin Yu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 122951-122951 被引量:4
标识
DOI:10.1016/j.eswa.2023.122951
摘要

Hydrological forecasting is an indispensable tool in intelligent water conservation for flood control and drought mitigation. Due to the influences of human activities and climate variability, accurate water level prediction poses a significant challenge. To address this, we develop a novel hybrid deep architecture, that is Dual-Stage Attention-based Multi-modal Deep Learning (DSAMDL), for reliable and interpretable multi-scale water level forecasting. Unlike previous techniques, multisource data is treated as different modalities in the proposed model. Firstly, we employ the one-dimensional Convolution to capture local trend features, followed by the Bidirectional Long Short-term Memory network to learn long-term dependencies. Subsequently, we design a dual-stage attention mechanism, which assigns contributions in a phased manner to different temporal and spatial. Finally, an adaptive fusion method is applied to enhance overall performance. To validate its accuracy and efficiency, short long-term drought water level forecasting and predictions under various events are implemented over six reservoir stations in the Feiyun River Basin, Wenzhou City. Four evaluation metrics, namely RMSE, MAE, CORR, and NSE, are introduced for comprehensive assessment against the start-of-the-art baselines. The results well-document that the DSAMDL framework achieves satisfactory accuracy, with an average improvement of 22.4%, 27.8%, 29.7%, and 11.5% in these four metrics, showcasing the model's effectiveness in handling complex multiscale drought water level forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5High_0发布了新的文献求助10
刚刚
搜集达人应助祥子的骆驼采纳,获得10
刚刚
小二郎应助mm采纳,获得10
刚刚
小马甲应助dsfsd采纳,获得10
刚刚
1秒前
HenryXiao发布了新的文献求助10
1秒前
天天快乐应助花生采纳,获得10
1秒前
2秒前
金不换完成签到,获得积分10
2秒前
2秒前
hxl发布了新的文献求助30
2秒前
3秒前
VelesAlexei完成签到,获得积分10
3秒前
田様应助小粉红wow~~~采纳,获得10
4秒前
4秒前
猪猪hero发布了新的文献求助10
4秒前
hdh发布了新的文献求助10
5秒前
coke发布了新的文献求助10
5秒前
硬膜之下完成签到,获得积分10
5秒前
zyzhnu完成签到,获得积分10
5秒前
大力凡儿完成签到 ,获得积分10
6秒前
笑羽发布了新的文献求助10
6秒前
6秒前
Ryuki完成签到 ,获得积分10
8秒前
8秒前
毛毛发布了新的文献求助10
8秒前
9秒前
9秒前
Jiayi完成签到,获得积分10
9秒前
9秒前
10秒前
酷波er应助巴拉巴拉巴采纳,获得10
11秒前
11秒前
11秒前
SWL发布了新的文献求助10
11秒前
12秒前
今后应助张文静采纳,获得10
12秒前
13秒前
nino完成签到,获得积分10
13秒前
niat完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650