Multimodal deep learning water level forecasting model for multiscale drought alert in Feiyun River basin

计算机科学 深度学习 人工智能 机器学习 均方误差 数据挖掘 环境科学 统计 数学
作者
Rui Dai,Wanliang Wang,Zhang Ren-gong,Lijin Yu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 122951-122951 被引量:4
标识
DOI:10.1016/j.eswa.2023.122951
摘要

Hydrological forecasting is an indispensable tool in intelligent water conservation for flood control and drought mitigation. Due to the influences of human activities and climate variability, accurate water level prediction poses a significant challenge. To address this, we develop a novel hybrid deep architecture, that is Dual-Stage Attention-based Multi-modal Deep Learning (DSAMDL), for reliable and interpretable multi-scale water level forecasting. Unlike previous techniques, multisource data is treated as different modalities in the proposed model. Firstly, we employ the one-dimensional Convolution to capture local trend features, followed by the Bidirectional Long Short-term Memory network to learn long-term dependencies. Subsequently, we design a dual-stage attention mechanism, which assigns contributions in a phased manner to different temporal and spatial. Finally, an adaptive fusion method is applied to enhance overall performance. To validate its accuracy and efficiency, short long-term drought water level forecasting and predictions under various events are implemented over six reservoir stations in the Feiyun River Basin, Wenzhou City. Four evaluation metrics, namely RMSE, MAE, CORR, and NSE, are introduced for comprehensive assessment against the start-of-the-art baselines. The results well-document that the DSAMDL framework achieves satisfactory accuracy, with an average improvement of 22.4%, 27.8%, 29.7%, and 11.5% in these four metrics, showcasing the model's effectiveness in handling complex multiscale drought water level forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助布鲁鲁采纳,获得10
刚刚
刚刚
悦耳寒松发布了新的文献求助10
1秒前
1秒前
霍嘉文完成签到,获得积分10
1秒前
2秒前
bluesiryao发布了新的文献求助10
2秒前
李爱国应助23采纳,获得10
3秒前
3秒前
SHJ发布了新的文献求助10
3秒前
开心的幻柏完成签到 ,获得积分10
3秒前
大神完成签到 ,获得积分20
3秒前
3秒前
4秒前
4秒前
闪闪的YOSH完成签到,获得积分10
4秒前
Jimmy完成签到,获得积分10
4秒前
仁爱书白完成签到,获得积分10
5秒前
5秒前
孤独的珩发布了新的文献求助10
6秒前
孙悦完成签到,获得积分10
7秒前
lu完成签到,获得积分10
7秒前
Rachel发布了新的文献求助10
7秒前
Jimmy发布了新的文献求助10
7秒前
丘比特应助隐形的易巧采纳,获得10
7秒前
仁爱书白发布了新的文献求助10
8秒前
善学以致用应助zhui采纳,获得10
8秒前
8秒前
8秒前
小蘑菇应助拼搏起眸采纳,获得10
8秒前
山止川行完成签到 ,获得积分10
8秒前
8秒前
9秒前
okghy发布了新的文献求助10
9秒前
zcydbttj2011完成签到 ,获得积分10
9秒前
在水一方应助哈哈哈采纳,获得10
9秒前
9秒前
优美元枫完成签到,获得积分10
10秒前
11秒前
赵胜男完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794