Updated Progress on Mass Spectrometry Imaging and its Application in Cancer Treatment and Drug Discovery

药物发现 质谱成像 生物标志物发现 计算机科学 癌症 质谱法 计算生物学 医学 生物信息学 化学 蛋白质组学 内科学 生物 色谱法 生物化学 基因
作者
Mingyue Li,Jie Zhou,Tingting Zhang,Jingyang Lu,Yajie Wang,Junyu Liu,Xiaoyu Zhang,Hạixia Chen
出处
期刊:Recent Patents on Anti-cancer Drug Discovery [Bentham Science]
卷期号:19
标识
DOI:10.2174/0115748928269691231203164021
摘要

Background: Mass spectrometry imaging (MSI) is an imaging method based on mass spectrometry technology that can simultaneously visualize the spatial distribution of various biological molecules. The use of MSI in cancer detection and drug discovery has been extensively investigated in recent years. Objective: This review aims to summarize the latest advances of MSI and its specific applications in cancer detection and drug discovery, providing a basic understanding of the development and application of MSI in the past five years and offering references for the further application of MSI in cancer detection and drug discovery. Methods: In the database, "mass spectrometry imaging", "cancer treatment", and "drug discovery" were used as keywords for literature retrieval, and the time range was limited to "2018- 2023". After organizing and analyzing the literature and patents, a review was conducted. Results: Based on the literature, it was found that the updated progress of MSI in the past five years mostly focused on concrete methods, operation procedures, facilities, and composite applications. The patents of MSI were mainly correlated with the mass spectrometry imaging system and its application in cancer treatment. MSI is conducive to investigating the therapeutic schedule of cancer and searching for new drugs. Conclusion: MSI is a convenient, fast and powerful technology that has made great progress in sample preparation, instrumentation, quantitation, and multimodal imaging. MSI has emerged as a powerful technique in various biomedical applications, which has strong potential in cancer detection, treatment, formation mechanism research, discovery of biomarkers, and drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yth发布了新的文献求助10
1秒前
谨慎的雨琴完成签到,获得积分10
1秒前
1秒前
1秒前
Jasper应助俺爱SCI采纳,获得10
1秒前
务实的数据线完成签到,获得积分10
1秒前
2秒前
bkagyin应助天意不可违采纳,获得10
3秒前
打打应助Elian采纳,获得10
3秒前
3秒前
黄垚发布了新的文献求助10
3秒前
李爱国应助zxy采纳,获得20
3秒前
5秒前
yu完成签到,获得积分10
5秒前
呆萌问丝完成签到,获得积分10
5秒前
翁怜晴完成签到,获得积分10
6秒前
啦啦啦发布了新的文献求助10
6秒前
于帆发布了新的文献求助10
6秒前
风趣筮完成签到 ,获得积分10
7秒前
7秒前
内向代珊发布了新的文献求助10
8秒前
传奇3应助乐乐采纳,获得10
8秒前
mwj发布了新的文献求助10
11秒前
亚蛋超可爱给亚蛋超可爱的求助进行了留言
11秒前
11秒前
momobobi发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
陶醉的匕完成签到,获得积分10
15秒前
15秒前
胡琰彦完成签到,获得积分10
16秒前
慕青应助小王采纳,获得10
16秒前
骑着蜗牛追流星完成签到,获得积分10
17秒前
17秒前
俺爱SCI发布了新的文献求助10
17秒前
ZM完成签到,获得积分10
17秒前
丘比特应助hhc采纳,获得10
17秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919