GraphLSurv: A scalable survival prediction network with adaptive and sparse structure learning for histopathological whole-slide images

计算机科学 可扩展性 人工智能 网络结构 深度学习 机器学习 模式识别(心理学) 数据库
作者
Pei Liu,Luping Ji,Feng Ye,Bo Fu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:231: 107433-107433 被引量:7
标识
DOI:10.1016/j.cmpb.2023.107433
摘要

Predicting patients' survival from gigapixel Whole-Slide Images (WSIs) has always been a challenging task. To learn effective WSI representations for survival prediction, existing deep learning methods have explored utilizing graphs to describe the complex structure inner WSIs, where graph node is respective to WSI patch. However, these graphs are often densely-connected or static, leading to some redundant or missing patch correlations. Moreover, these methods cannot be directly scaled to the very-large WSI with more than 10,000 patches. To address these, this paper proposes a scalable graph convolution network, GraphLSurv, which can efficiently learn adaptive and sparse structures to better characterize WSIs for survival prediction.GraphLSurv has three highlights in methodology: (1) it generates adaptive and sparse structures for patches so that latent patch correlations could be captured and adjusted dynamically according to prediction tasks; (2) based on the generated structure and a given graph, GraphLSurv further aggregates local microenvironmental cues into a non-local embedding using the proposed hybrid message passing network; (3) to make this network suitable for very large-scale graphs, it adopts an anchor-based technique to reduce theorical computation complexity.The experiments on 2268 WSIs show that GraphLSurv achieves a concordance-index of 0.66132 and 0.68348, with an improvement of 3.79% and 3.41% compared to existing methods, on NLST and TCGA-BRCA, respectively.GraphLSurv could often perform better than previous methods, which suggests that GraphLSurv could provide an important and effective means for WSI survival prediction. Moreover, this work empirically shows that adaptive and sparse structures could be more suitable than static or dense ones for modeling WSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NexusExplorer应助周漫采纳,获得10
1秒前
4秒前
4秒前
悲伤火龙果完成签到 ,获得积分10
8秒前
小星星发布了新的文献求助10
9秒前
suan完成签到,获得积分10
10秒前
11秒前
11秒前
脑洞疼应助dingshukai1234采纳,获得10
12秒前
13秒前
文静的大象完成签到 ,获得积分10
17秒前
littleriver发布了新的文献求助10
18秒前
ding应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
Hello应助科研通管家采纳,获得10
22秒前
无名老大应助Rain采纳,获得50
26秒前
chen应助李Sir采纳,获得10
27秒前
hujingyan应助十八采纳,获得10
27秒前
无名老大应助railgun采纳,获得10
28秒前
littleriver完成签到,获得积分10
30秒前
chandlusf发布了新的文献求助20
30秒前
34秒前
研究僧完成签到,获得积分10
36秒前
科研通AI2S应助笨笨小熊猫采纳,获得50
38秒前
传奇3应助笨笨小熊猫采纳,获得10
38秒前
39秒前
40秒前
42秒前
研究僧发布了新的文献求助10
44秒前
yiyi完成签到 ,获得积分10
44秒前
NexusExplorer应助聪明大米采纳,获得10
45秒前
47秒前
可爱的函函应助chandlusf采纳,获得20
49秒前
汉堡包应助开心雪卉采纳,获得10
49秒前
56秒前
活泼半凡完成签到 ,获得积分10
58秒前
58秒前
一一发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372178
求助须知:如何正确求助?哪些是违规求助? 2990056
关于积分的说明 8738558
捐赠科研通 2673400
什么是DOI,文献DOI怎么找? 1464453
科研通“疑难数据库(出版商)”最低求助积分说明 677527
邀请新用户注册赠送积分活动 668912