亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the Applicability of Transfer Learning and Feature Engineering in Epilepsy Prediction Using Hybrid Transformer Model

特征工程 计算机科学 变压器 人工智能 癫痫 学习迁移 机器学习 卷积神经网络 脑电图 深度学习 模式识别(心理学) 工程类 生物 精神科 电气工程 电压 神经科学 心理学
作者
Shuaicong Hu,Jian Liu,Rui Yang,Yanan Wang,Aiguo Wang,Kuanzheng Li,Wenxin Liu,Cuiwei Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 1321-1332 被引量:26
标识
DOI:10.1109/tnsre.2023.3244045
摘要

Objective: Epilepsy prediction algorithms offer patients with drug-resistant epilepsy a way to reduce unintended harm from sudden seizures. The purpose of this study is to investigate the applicability of transfer learning (TL) technique and model inputs for different deep learning (DL) model structures, which may provide a reference for researchers to design algorithms. Moreover, we also attempt to provide a novel and precise Transformer-based algorithm. Methods: Two classical feature engineering methods and the proposed method which consists of various EEG rhythms are explored, then a hybrid Transformer model is designed to evaluate the advantages over pure convolutional neural networks (CNN)-based models. Finally, the performances of two model structures are analyzed utilizing patient-independent approach and two TL strategies. Results: We tested our method on the CHB-MIT scalp EEG database, the results showed that our feature engineering method gains a significant improvement in model performance and is more suitable for Transformer-based model. In addition, the performance improvement of Transformer-based model utilizing fine-tuning strategies is more robust than that of pure CNN-based model, and our model achieved an optimal sensitivity of 91.7% with false positive rate (FPR) of 0.00/h. Conclusion: Our epilepsy prediction method achieves excellent performance and demonstrates its advantage over pure CNN-based structure in TL. Moreover, we find that the information contained in the gamma (γ) rhythm is helpful for epilepsy prediction. Significance: We propose a precise hybrid Transformer model for epilepsy prediction. The applicability of TL and model inputs is also explored for customizing personalized models in clinical application scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霓霓发布了新的文献求助80
6秒前
11秒前
机灵的幻灵完成签到 ,获得积分10
16秒前
明昼发布了新的文献求助10
17秒前
18秒前
DduYy完成签到,获得积分10
19秒前
ferritin完成签到 ,获得积分10
21秒前
22秒前
JamesPei应助一见喜采纳,获得10
23秒前
明昼完成签到,获得积分10
24秒前
上官若男应助世界需要我采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
30秒前
33秒前
34秒前
悦耳冬萱完成签到 ,获得积分10
35秒前
36秒前
37秒前
丘比特应助科研通管家采纳,获得10
37秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
38秒前
40秒前
44秒前
51秒前
科目三应助爱撒娇的文博采纳,获得10
51秒前
KAZEN完成签到 ,获得积分10
54秒前
56秒前
可乐发布了新的文献求助10
1分钟前
CipherSage应助LucyMartinez采纳,获得10
1分钟前
李爱国应助菠萝采纳,获得10
1分钟前
1分钟前
1分钟前
端庄亦巧发布了新的文献求助10
1分钟前
浅蓝完成签到 ,获得积分10
1分钟前
1分钟前
Re发布了新的文献求助10
1分钟前
kdjc完成签到 ,获得积分10
1分钟前
菠萝发布了新的文献求助10
1分钟前
共享精神应助QJQ采纳,获得10
1分钟前
abc完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739102
求助须知:如何正确求助?哪些是违规求助? 5383779
关于积分的说明 15339426
捐赠科研通 4881827
什么是DOI,文献DOI怎么找? 2623950
邀请新用户注册赠送积分活动 1572640
关于科研通互助平台的介绍 1529390