Exploring the Applicability of Transfer Learning and Feature Engineering in Epilepsy Prediction Using Hybrid Transformer Model

特征工程 计算机科学 变压器 人工智能 癫痫 学习迁移 机器学习 卷积神经网络 脑电图 深度学习 模式识别(心理学) 工程类 生物 精神科 神经科学 心理学 电气工程 电压
作者
Shuaicong Hu,Jian Liu,Rui Yang,Yanan Wang,Aiguo Wang,Kuanzheng Li,Wenxin Liu,Cuiwei Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 1321-1332 被引量:26
标识
DOI:10.1109/tnsre.2023.3244045
摘要

Objective: Epilepsy prediction algorithms offer patients with drug-resistant epilepsy a way to reduce unintended harm from sudden seizures. The purpose of this study is to investigate the applicability of transfer learning (TL) technique and model inputs for different deep learning (DL) model structures, which may provide a reference for researchers to design algorithms. Moreover, we also attempt to provide a novel and precise Transformer-based algorithm. Methods: Two classical feature engineering methods and the proposed method which consists of various EEG rhythms are explored, then a hybrid Transformer model is designed to evaluate the advantages over pure convolutional neural networks (CNN)-based models. Finally, the performances of two model structures are analyzed utilizing patient-independent approach and two TL strategies. Results: We tested our method on the CHB-MIT scalp EEG database, the results showed that our feature engineering method gains a significant improvement in model performance and is more suitable for Transformer-based model. In addition, the performance improvement of Transformer-based model utilizing fine-tuning strategies is more robust than that of pure CNN-based model, and our model achieved an optimal sensitivity of 91.7% with false positive rate (FPR) of 0.00/h. Conclusion: Our epilepsy prediction method achieves excellent performance and demonstrates its advantage over pure CNN-based structure in TL. Moreover, we find that the information contained in the gamma (γ) rhythm is helpful for epilepsy prediction. Significance: We propose a precise hybrid Transformer model for epilepsy prediction. The applicability of TL and model inputs is also explored for customizing personalized models in clinical application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
这课题真顺利完成签到,获得积分10
刚刚
zodiac发布了新的文献求助10
1秒前
loen发布了新的文献求助10
1秒前
可乐发布了新的文献求助10
1秒前
eeyore发布了新的文献求助10
2秒前
Vyasa发布了新的文献求助10
3秒前
chase发布了新的文献求助10
3秒前
3秒前
开放的煎蛋完成签到,获得积分20
4秒前
Hello应助天Q采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
Whassupww完成签到,获得积分10
8秒前
莫愁发布了新的文献求助10
8秒前
文艺迎夏完成签到,获得积分10
9秒前
声声慢发布了新的文献求助10
9秒前
斯文败类应助hahhh7采纳,获得10
10秒前
10秒前
Eric发布了新的文献求助10
10秒前
小潘同学发布了新的文献求助10
11秒前
小杰完成签到 ,获得积分10
13秒前
Three发布了新的文献求助10
13秒前
FashionBoy应助roomvinli采纳,获得10
13秒前
14秒前
无辜紫菜发布了新的文献求助10
15秒前
田様应助Vyasa采纳,获得10
16秒前
17秒前
18秒前
爆米花应助碧蓝的幻梦采纳,获得10
18秒前
19秒前
20秒前
20秒前
hh完成签到,获得积分10
21秒前
Owen应助背后的文博采纳,获得10
23秒前
正经大善人完成签到,获得积分10
23秒前
zzz发布了新的文献求助10
24秒前
24秒前
WEI发布了新的文献求助10
24秒前
二十岁阿婆完成签到 ,获得积分10
26秒前
自由凌波发布了新的文献求助10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024340
求助须知:如何正确求助?哪些是违规求助? 3564210
关于积分的说明 11344678
捐赠科研通 3295369
什么是DOI,文献DOI怎么找? 1815104
邀请新用户注册赠送积分活动 889673
科研通“疑难数据库(出版商)”最低求助积分说明 813097