Exploring the Applicability of Transfer Learning and Feature Engineering in Epilepsy Prediction Using Hybrid Transformer Model

特征工程 计算机科学 变压器 人工智能 癫痫 学习迁移 机器学习 卷积神经网络 脑电图 深度学习 模式识别(心理学) 工程类 生物 精神科 神经科学 心理学 电气工程 电压
作者
Shuaicong Hu,Jian Liu,Rui Yang,Yanan Wang,Aiguo Wang,Kuanzheng Li,Wenxin Liu,Cuiwei Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 1321-1332 被引量:26
标识
DOI:10.1109/tnsre.2023.3244045
摘要

Objective: Epilepsy prediction algorithms offer patients with drug-resistant epilepsy a way to reduce unintended harm from sudden seizures. The purpose of this study is to investigate the applicability of transfer learning (TL) technique and model inputs for different deep learning (DL) model structures, which may provide a reference for researchers to design algorithms. Moreover, we also attempt to provide a novel and precise Transformer-based algorithm. Methods: Two classical feature engineering methods and the proposed method which consists of various EEG rhythms are explored, then a hybrid Transformer model is designed to evaluate the advantages over pure convolutional neural networks (CNN)-based models. Finally, the performances of two model structures are analyzed utilizing patient-independent approach and two TL strategies. Results: We tested our method on the CHB-MIT scalp EEG database, the results showed that our feature engineering method gains a significant improvement in model performance and is more suitable for Transformer-based model. In addition, the performance improvement of Transformer-based model utilizing fine-tuning strategies is more robust than that of pure CNN-based model, and our model achieved an optimal sensitivity of 91.7% with false positive rate (FPR) of 0.00/h. Conclusion: Our epilepsy prediction method achieves excellent performance and demonstrates its advantage over pure CNN-based structure in TL. Moreover, we find that the information contained in the gamma (γ) rhythm is helpful for epilepsy prediction. Significance: We propose a precise hybrid Transformer model for epilepsy prediction. The applicability of TL and model inputs is also explored for customizing personalized models in clinical application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小可发布了新的文献求助10
刚刚
英姑应助酷酷的起眸采纳,获得10
1秒前
Blue_Pig发布了新的文献求助10
1秒前
科研小白完成签到,获得积分10
2秒前
sooya发布了新的文献求助20
3秒前
3秒前
tiddler完成签到,获得积分10
3秒前
科研通AI2S应助滴滴采纳,获得10
3秒前
wgx完成签到,获得积分20
3秒前
4秒前
爱静静应助Keep采纳,获得10
4秒前
4秒前
4秒前
小马甲应助韭菜采纳,获得10
5秒前
MADKAI发布了新的文献求助10
5秒前
机智的白猫完成签到,获得积分10
5秒前
李健的小迷弟应助xxx采纳,获得10
5秒前
杜杜完成签到,获得积分10
5秒前
NexusExplorer应助新的心跳采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
JamesPei应助小可采纳,获得10
7秒前
粗暴的醉卉完成签到,获得积分10
7秒前
7秒前
科研通AI5应助stt采纳,获得10
8秒前
sunzhiyu233发布了新的文献求助10
9秒前
9秒前
缓缓地安静关注了科研通微信公众号
10秒前
10秒前
送外卖了完成签到,获得积分10
10秒前
Blue_Pig完成签到,获得积分10
10秒前
Orange应助feng采纳,获得10
10秒前
11秒前
考虑考虑发布了新的文献求助10
11秒前
毛慢慢发布了新的文献求助10
11秒前
阿宝发布了新的文献求助10
11秒前
深情安青应助通~采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759