Exploring the Applicability of Transfer Learning and Feature Engineering in Epilepsy Prediction Using Hybrid Transformer Model

特征工程 计算机科学 变压器 人工智能 癫痫 学习迁移 机器学习 卷积神经网络 脑电图 深度学习 模式识别(心理学) 工程类 生物 精神科 电气工程 电压 神经科学 心理学
作者
Shuaicong Hu,Jian Liu,Rui Yang,Yanan Wang,Aiguo Wang,Kuanzheng Li,Wenxin Liu,Cuiwei Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 1321-1332 被引量:26
标识
DOI:10.1109/tnsre.2023.3244045
摘要

Objective: Epilepsy prediction algorithms offer patients with drug-resistant epilepsy a way to reduce unintended harm from sudden seizures. The purpose of this study is to investigate the applicability of transfer learning (TL) technique and model inputs for different deep learning (DL) model structures, which may provide a reference for researchers to design algorithms. Moreover, we also attempt to provide a novel and precise Transformer-based algorithm. Methods: Two classical feature engineering methods and the proposed method which consists of various EEG rhythms are explored, then a hybrid Transformer model is designed to evaluate the advantages over pure convolutional neural networks (CNN)-based models. Finally, the performances of two model structures are analyzed utilizing patient-independent approach and two TL strategies. Results: We tested our method on the CHB-MIT scalp EEG database, the results showed that our feature engineering method gains a significant improvement in model performance and is more suitable for Transformer-based model. In addition, the performance improvement of Transformer-based model utilizing fine-tuning strategies is more robust than that of pure CNN-based model, and our model achieved an optimal sensitivity of 91.7% with false positive rate (FPR) of 0.00/h. Conclusion: Our epilepsy prediction method achieves excellent performance and demonstrates its advantage over pure CNN-based structure in TL. Moreover, we find that the information contained in the gamma (γ) rhythm is helpful for epilepsy prediction. Significance: We propose a precise hybrid Transformer model for epilepsy prediction. The applicability of TL and model inputs is also explored for customizing personalized models in clinical application scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
河镜完成签到,获得积分10
刚刚
迪仔完成签到 ,获得积分10
刚刚
2秒前
无花果应助逃亡的小狗采纳,获得10
3秒前
Millar发布了新的文献求助10
3秒前
3秒前
NULL完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
jiulei完成签到,获得积分10
8秒前
9秒前
12rcli完成签到,获得积分10
9秒前
10秒前
冰点发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
科目三应助wdfddzh采纳,获得10
12秒前
12秒前
Sylvia卉发布了新的文献求助10
12秒前
13秒前
椿人完成签到 ,获得积分10
14秒前
fedehe发布了新的文献求助10
15秒前
万能图书馆应助Rason采纳,获得10
15秒前
yujianjin发布了新的文献求助10
16秒前
16秒前
思源应助lizh187采纳,获得10
16秒前
俭朴果汁发布了新的文献求助10
17秒前
果冻发布了新的文献求助10
18秒前
PHW完成签到,获得积分10
18秒前
时尚语蓉完成签到,获得积分10
19秒前
21秒前
21秒前
23秒前
23秒前
Matrix完成签到,获得积分20
24秒前
DX120210165发布了新的文献求助10
24秒前
Owen应助qvq采纳,获得10
26秒前
VDC关闭了VDC文献求助
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660180
求助须知:如何正确求助?哪些是违规求助? 4831795
关于积分的说明 15089378
捐赠科研通 4818785
什么是DOI,文献DOI怎么找? 2578783
邀请新用户注册赠送积分活动 1533379
关于科研通互助平台的介绍 1492124