Exploring the Applicability of Transfer Learning and Feature Engineering in Epilepsy Prediction Using Hybrid Transformer Model

特征工程 计算机科学 变压器 人工智能 癫痫 学习迁移 机器学习 卷积神经网络 脑电图 深度学习 模式识别(心理学) 工程类 生物 精神科 神经科学 心理学 电气工程 电压
作者
Shuaicong Hu,Jian Liu,Rui Yang,Yanan Wang,Aiguo Wang,Kuanzheng Li,Wenxin Liu,Cuiwei Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 1321-1332 被引量:26
标识
DOI:10.1109/tnsre.2023.3244045
摘要

Objective: Epilepsy prediction algorithms offer patients with drug-resistant epilepsy a way to reduce unintended harm from sudden seizures. The purpose of this study is to investigate the applicability of transfer learning (TL) technique and model inputs for different deep learning (DL) model structures, which may provide a reference for researchers to design algorithms. Moreover, we also attempt to provide a novel and precise Transformer-based algorithm. Methods: Two classical feature engineering methods and the proposed method which consists of various EEG rhythms are explored, then a hybrid Transformer model is designed to evaluate the advantages over pure convolutional neural networks (CNN)-based models. Finally, the performances of two model structures are analyzed utilizing patient-independent approach and two TL strategies. Results: We tested our method on the CHB-MIT scalp EEG database, the results showed that our feature engineering method gains a significant improvement in model performance and is more suitable for Transformer-based model. In addition, the performance improvement of Transformer-based model utilizing fine-tuning strategies is more robust than that of pure CNN-based model, and our model achieved an optimal sensitivity of 91.7% with false positive rate (FPR) of 0.00/h. Conclusion: Our epilepsy prediction method achieves excellent performance and demonstrates its advantage over pure CNN-based structure in TL. Moreover, we find that the information contained in the gamma (γ) rhythm is helpful for epilepsy prediction. Significance: We propose a precise hybrid Transformer model for epilepsy prediction. The applicability of TL and model inputs is also explored for customizing personalized models in clinical application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姗姗发布了新的文献求助10
1秒前
1秒前
1秒前
爱笑寻梅发布了新的文献求助20
2秒前
于归发布了新的文献求助10
2秒前
Andywong发布了新的文献求助10
3秒前
陈醋塔塔完成签到,获得积分10
4秒前
4秒前
西北望完成签到,获得积分20
5秒前
戈多来了发布了新的文献求助10
6秒前
田田完成签到,获得积分10
6秒前
6秒前
kunyi完成签到 ,获得积分10
8秒前
8秒前
丁老三发布了新的文献求助10
9秒前
Yvette发布了新的文献求助10
11秒前
12秒前
13秒前
平平平平发布了新的文献求助10
13秒前
CipherSage应助于归采纳,获得30
14秒前
16秒前
啥也不会的萌新完成签到,获得积分10
17秒前
19秒前
皮皮虾完成签到,获得积分10
19秒前
20秒前
20秒前
HL完成签到 ,获得积分10
21秒前
肖肖肖完成签到 ,获得积分10
23秒前
23秒前
Tonykoose发布了新的文献求助30
23秒前
麻溜儿完成签到,获得积分10
23秒前
过儿关注了科研通微信公众号
24秒前
24秒前
王海海完成签到,获得积分10
25秒前
25秒前
25秒前
傲娇蜻蜓完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152043
求助须知:如何正确求助?哪些是违规求助? 2803339
关于积分的说明 7853343
捐赠科研通 2460804
什么是DOI,文献DOI怎么找? 1310058
科研通“疑难数据库(出版商)”最低求助积分说明 629097
版权声明 601765