亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the Applicability of Transfer Learning and Feature Engineering in Epilepsy Prediction Using Hybrid Transformer Model

特征工程 计算机科学 变压器 人工智能 癫痫 学习迁移 机器学习 卷积神经网络 脑电图 深度学习 模式识别(心理学) 工程类 生物 精神科 电气工程 电压 神经科学 心理学
作者
Shuaicong Hu,Jian Liu,Rui Yang,Yanan Wang,Aiguo Wang,Kuanzheng Li,Wenxin Liu,Cuiwei Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 1321-1332 被引量:26
标识
DOI:10.1109/tnsre.2023.3244045
摘要

Objective: Epilepsy prediction algorithms offer patients with drug-resistant epilepsy a way to reduce unintended harm from sudden seizures. The purpose of this study is to investigate the applicability of transfer learning (TL) technique and model inputs for different deep learning (DL) model structures, which may provide a reference for researchers to design algorithms. Moreover, we also attempt to provide a novel and precise Transformer-based algorithm. Methods: Two classical feature engineering methods and the proposed method which consists of various EEG rhythms are explored, then a hybrid Transformer model is designed to evaluate the advantages over pure convolutional neural networks (CNN)-based models. Finally, the performances of two model structures are analyzed utilizing patient-independent approach and two TL strategies. Results: We tested our method on the CHB-MIT scalp EEG database, the results showed that our feature engineering method gains a significant improvement in model performance and is more suitable for Transformer-based model. In addition, the performance improvement of Transformer-based model utilizing fine-tuning strategies is more robust than that of pure CNN-based model, and our model achieved an optimal sensitivity of 91.7% with false positive rate (FPR) of 0.00/h. Conclusion: Our epilepsy prediction method achieves excellent performance and demonstrates its advantage over pure CNN-based structure in TL. Moreover, we find that the information contained in the gamma (γ) rhythm is helpful for epilepsy prediction. Significance: We propose a precise hybrid Transformer model for epilepsy prediction. The applicability of TL and model inputs is also explored for customizing personalized models in clinical application scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Shmily采纳,获得10
3秒前
yznfly应助人帅气质佳采纳,获得50
6秒前
烟花应助Shmily采纳,获得10
7秒前
8秒前
8秒前
8秒前
清明雨上完成签到,获得积分10
11秒前
11秒前
FashionBoy应助Shmily采纳,获得10
13秒前
宇文宛菡发布了新的文献求助10
16秒前
古今奇观完成签到 ,获得积分10
21秒前
25秒前
小刘很怕忙完成签到 ,获得积分10
26秒前
Hanli完成签到,获得积分10
34秒前
冬日暖阳完成签到,获得积分10
40秒前
伶俐的迎丝完成签到 ,获得积分20
40秒前
41秒前
洪汉完成签到,获得积分10
43秒前
洪汉发布了新的文献求助10
46秒前
11mao11完成签到 ,获得积分10
46秒前
小菊cheer完成签到,获得积分10
47秒前
Sickey完成签到,获得积分10
49秒前
52秒前
清脆元冬发布了新的文献求助10
58秒前
芊芊墨客完成签到,获得积分10
1分钟前
ayun完成签到 ,获得积分10
1分钟前
8R完成签到 ,获得积分10
1分钟前
芊芊墨完成签到,获得积分10
1分钟前
沉吟完成签到,获得积分10
1分钟前
Endless完成签到,获得积分10
1分钟前
打打应助清脆元冬采纳,获得10
1分钟前
1分钟前
今后应助芋头采纳,获得10
1分钟前
1分钟前
熊一只发布了新的文献求助10
1分钟前
psykyo发布了新的文献求助10
1分钟前
JohnsonTse完成签到,获得积分10
1分钟前
落后新晴完成签到 ,获得积分10
1分钟前
狗狗完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788109
求助须知:如何正确求助?哪些是违规求助? 5704481
关于积分的说明 15473229
捐赠科研通 4916268
什么是DOI,文献DOI怎么找? 2646252
邀请新用户注册赠送积分活动 1593896
关于科研通互助平台的介绍 1548301