Hierarchically nanostructured Ag/ZnO/nBC for VOC photocatalytic degradation: Dynamic adsorption and enhanced charge transfer

光催化 吸附 材料科学 化学工程 光降解 介孔材料 催化作用 电子转移 纳米颗粒 降级(电信) 可见光谱 光化学 传质 纳米技术 化学 有机化学 光电子学 电信 计算机科学 工程类 色谱法
作者
Yin Zhang,Guangyao Zhao,Zupeng Chen,Hailan Lian,Lu Gan,Mingzhu Pan
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (6): 108690-108690 被引量:3
标识
DOI:10.1016/j.jece.2022.108690
摘要

The adsorption-photodegradation strategy can achieve continuous enrichment and efficient oxidation of volatile organic compounds (VOCs), but it requires a trade-off among adsorption, mass transfer, and charge transfer in this dynamic process. Therefore, the construction of an effective and stable catalytic system remains an immense challenge. Here, we report a strategy for constructing a hierarchically structured photocatalyst for efficiently degrading VOCs by assembling nanobiochar (nBC, ∼ 6.25 µm), the active center of ZnO (∼ 460 nm), and plasmonic-Ag nanoparticles (Ag NPs, ∼ 10 nm). Benefiting from its abundant surface functional groups (–OH, –CO, and –CO) and hierarchical structure-induced mesopores and macropores, VOCs can be quickly captured and dynamically diffused. Furthermore, Ag NPs build a charge transfer bridge and accumulate electrons to nBC from both the photogenerated electrons that are induced by ZnO and hot electrons from the local surface plasmon resonance (LSPR) effect of Ag NPs. Afterward, a desirable spatial separation of charge carriers and visible-light response can be achieved. Therefore, Ag/ZnO/nBC maximizes the reactive oxygen species (e.g., ·OH and ·O2−) and shows a 7.8 times higher degradation rate of formaldehyde than ZnO, and it also displays universality and stability with high photocatalytic efficiency. The photocatalytic performance was comprehensively determined based on the relative humidity, initial concentration, catalyst dose, and mass ratio of Ag NPs. This facile and universal strategy for architecting hierarchically structured photocatalysts provides an approach for enhancing photocatalytic performance for VOC degradation and environmental pollution treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gnr2000发布了新的文献求助10
1秒前
ifast完成签到 ,获得积分10
1秒前
哦了欧了完成签到,获得积分10
1秒前
Spinnin完成签到,获得积分10
2秒前
司空豁发布了新的文献求助10
2秒前
刁民发布了新的文献求助10
2秒前
2秒前
3秒前
海慕云发布了新的文献求助10
3秒前
烟花应助悦耳成危采纳,获得10
3秒前
朱道斌发布了新的文献求助10
4秒前
传奇3应助白华苍松采纳,获得10
4秒前
852应助元梦易采纳,获得10
4秒前
Unicorn完成签到,获得积分10
4秒前
背后白梦发布了新的文献求助10
5秒前
脑洞疼应助能干的听云采纳,获得10
5秒前
kksk发布了新的文献求助10
5秒前
腾龙剑影完成签到 ,获得积分10
5秒前
swy完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助哈哈采纳,获得10
6秒前
西米完成签到 ,获得积分10
6秒前
廖天佑完成签到,获得积分10
7秒前
7秒前
8秒前
weiyi完成签到,获得积分10
8秒前
9秒前
哦了欧了发布了新的文献求助10
9秒前
打打应助xupeng采纳,获得10
9秒前
9秒前
10秒前
沈言应助Elian采纳,获得10
10秒前
淡定如之发布了新的文献求助10
11秒前
11秒前
11秒前
丰富炳发布了新的文献求助10
12秒前
快快乐乐巴完成签到,获得积分10
13秒前
13秒前
香蕉耷关注了科研通微信公众号
13秒前
喝到几点发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307880
求助须知:如何正确求助?哪些是违规求助? 2941451
关于积分的说明 8503412
捐赠科研通 2615951
什么是DOI,文献DOI怎么找? 1429290
科研通“疑难数据库(出版商)”最低求助积分说明 663712
邀请新用户注册赠送积分活动 648671