已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Systematic Review of Multi-Objective Evolutionary Algorithms Optimization Frameworks

计算机科学 进化算法 优化算法 算法 数学优化 数学 人工智能
作者
Andrei Pătrăușanu,Adrian Florea,Mihai Neghină,Alina Dicoiu,Radu Chiş
出处
期刊:Processes [MDPI AG]
卷期号:12 (5): 869-869 被引量:2
标识
DOI:10.3390/pr12050869
摘要

The study of evolutionary algorithms (EAs) has witnessed an impressive increase during the last decades. The need to explore this area is determined by the growing request for design and the optimization of more and more engineering problems in society, such as highway construction processes, food and agri-technologies processes, resource allocation problems, logistics and transportation systems, microarchitectures, suspension systems optimal design, etc. All of these matters refer to specific highly computational problems with a huge design space, hence the obvious need for evolutionary algorithms and frameworks, or platforms that allow for the implementing and testing of such algorithms and methods. This paper aims to comparatively analyze the existing software platforms and state-of-the-art multi-objective optimization algorithms and make a review of what features exist and what features might be included next as further developments in such tools, from a researcher’s perspective. Additionally, it is essential for a framework to be easily extendable with new types of problems and optimization algorithms, metrics and quality indicators, genetic operators or specific solution representations and results analysis and comparison features. After presenting the most relevant existing features in these types of platforms, we suggest some future steps and the developments we have been working on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓尖尖发布了新的文献求助10
1秒前
耍酷青梦发布了新的文献求助10
1秒前
科研通AI2S应助dery采纳,获得10
4秒前
7秒前
bukeshuo发布了新的文献求助10
9秒前
科研通AI2S应助zxxxx采纳,获得10
13秒前
13秒前
冲塔亚德完成签到 ,获得积分10
15秒前
wanci应助zz采纳,获得10
15秒前
dery完成签到,获得积分10
16秒前
19秒前
22秒前
华仔应助mysoul123采纳,获得10
22秒前
在水一方应助林博2025采纳,获得10
23秒前
边城小子完成签到,获得积分10
23秒前
25秒前
cshuang发布了新的文献求助10
25秒前
Lucas应助可口可乐了采纳,获得10
25秒前
26秒前
十泱完成签到 ,获得积分10
27秒前
活力的采枫完成签到,获得积分10
28秒前
28秒前
Lucas应助阿飞采纳,获得10
32秒前
李爱国应助啦啦啦啦la采纳,获得10
35秒前
35秒前
36秒前
hhh发布了新的文献求助10
37秒前
自治自律自洽完成签到,获得积分10
38秒前
zz发布了新的文献求助10
38秒前
潇洒芫完成签到,获得积分10
39秒前
爆米花应助Eugenia采纳,获得10
40秒前
林博2025发布了新的文献求助10
41秒前
Jasper应助慧敏采纳,获得10
41秒前
hh完成签到 ,获得积分10
44秒前
44秒前
英姑应助zhao采纳,获得10
45秒前
CodeCraft应助MYY采纳,获得10
47秒前
黎明完成签到,获得积分10
48秒前
49秒前
田様应助xqxq采纳,获得10
50秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146435
求助须知:如何正确求助?哪些是违规求助? 2797816
关于积分的说明 7825904
捐赠科研通 2454242
什么是DOI,文献DOI怎么找? 1306225
科研通“疑难数据库(出版商)”最低求助积分说明 627679
版权声明 601503