亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Maximal Objectives in the Multiarmed Bandit with Applications

计算机科学 经济 风险分析(工程) 业务
作者
Eren Özbay,Vijay Kamble
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (12): 8853-8874
标识
DOI:10.1287/mnsc.2022.00801
摘要

In several applications of the stochastic multiarmed bandit problem, the traditional objective of maximizing the expected total reward can be inappropriate. In this paper, we study a new objective in the classic setup. Given K arms, instead of maximizing the expected total reward from T pulls (the traditional “sum” objective), we consider the vector of total rewards earned from each of the K arms at the end of T pulls and aim to maximize the expected highest total reward across arms (the “max” objective). For this objective, we show that any policy must incur an instance-dependent asymptotic regret of [Formula: see text] (with a higher instance-dependent constant compared with the traditional objective) and a worst case regret of [Formula: see text]. We then design an adaptive explore-then-commit policy featuring exploration based on appropriately tuned confidence bounds on the mean reward and an adaptive stopping criterion, which adapts to the problem difficulty and simultaneously achieves these bounds (up to logarithmic factors). We then generalize our algorithmic insights to the problem of maximizing the expected value of the average total reward of the top m arms with the highest total rewards. Our numerical experiments demonstrate the efficacy of our policies compared with several natural alternatives in practical parameter regimes. We discuss applications of these new objectives to the problem of conditioning an adequate supply of value-providing market entities (workers/sellers/service providers) in online platforms and marketplaces. This paper was accepted by Vivek Farias, data science. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.00801 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅青槐完成签到 ,获得积分10
3秒前
9秒前
ning完成签到 ,获得积分10
19秒前
上官若男应助周凯采纳,获得10
22秒前
23秒前
斯文败类应助读书的时候采纳,获得10
34秒前
36秒前
komorebi发布了新的文献求助10
40秒前
Akim应助撒旦asd采纳,获得10
48秒前
55秒前
小宋爱科研完成签到 ,获得积分10
56秒前
非蛋白呼吸商完成签到,获得积分10
58秒前
mengliu完成签到,获得积分0
1分钟前
华仔应助ohhhhhoho采纳,获得10
1分钟前
Criminology34应助komorebi采纳,获得10
1分钟前
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
1分钟前
英俊的铭应助读书的时候采纳,获得10
1分钟前
鱼贝贝完成签到 ,获得积分10
1分钟前
周凯发布了新的文献求助10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
SAIL完成签到 ,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
ohhhhhoho发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
烟消云散完成签到,获得积分10
2分钟前
孙泉发布了新的文献求助10
2分钟前
黎明前发布了新的文献求助10
2分钟前
古今奇观完成签到 ,获得积分10
2分钟前
黎明前完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731842
求助须知:如何正确求助?哪些是违规求助? 5333685
关于积分的说明 15321719
捐赠科研通 4877673
什么是DOI,文献DOI怎么找? 2620524
邀请新用户注册赠送积分活动 1569833
关于科研通互助平台的介绍 1526289