Revolutionizing CO2 Electrolysis: Fluent Gas Transportation within Hydrophobic Porous Cu2O

多孔性 法拉第效率 电催化剂 电解 纳米孔 多孔介质 相(物质) 电化学 化学工程 纳米技术 密度泛函理论 化学物理 材料科学 化学 工程类 计算化学 有机化学 物理化学 电极 电解质
作者
Qinghong Geng,Longlong Fan,Huige Chen,Chunhui Zhang,Zhe Xu,Ye Tian,Cunming Yu,Lei Kang,Yusuke Yamauchi,Cuiling Li,Lei Jiang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (15): 10599-10607 被引量:13
标识
DOI:10.1021/jacs.4c00082
摘要

The success of electrochemical CO2 reduction at high current densities hinges on precise interfacial transportation and the local concentration of gaseous CO2. However, the creation of efficient CO2 transportation channels remains an unexplored frontier. In this study, we design and synthesize hydrophobic porous Cu2O spheres with varying pore sizes to unveil the nanoporous channel's impact on gas transfer and triple-phase interfaces. The hydrophobic channels not only facilitate rapid CO2 transportation but also trap compressed CO2 bubbles to form abundant and stable triple-phase interfaces, which are crucial for high-current-density electrocatalysis. In CO2 electrolysis, in situ spectroscopy and density functional theory results reveal that atomic edges of concave surfaces promote C–C coupling via an energetically favorable OC-COH pathway, leading to overwhelming CO2-to-C2+ conversion. Leveraging optimal gas transportation and active site exposure, the hydrophobic porous Cu2O with a 240 nm pore size (P-Cu2O-240) stands out among all the samples and exhibits the best CO2-to-C2+ productivity with remarkable Faradaic efficiency and formation rate up to 75.3 ± 3.1% and 2518.2 ± 8.1 μmol h–1 cm–2, respectively. This study introduces a novel paradigm for efficient electrocatalysts that concurrently addresses active site design and gas-transfer challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜炖土豆完成签到,获得积分10
刚刚
疯狂的呃完成签到,获得积分10
刚刚
1秒前
5秒前
烂漫续发布了新的文献求助10
5秒前
Denmark发布了新的文献求助10
6秒前
8秒前
科研xiao白完成签到,获得积分20
9秒前
SS发布了新的文献求助10
9秒前
谦让的醉波完成签到,获得积分20
11秒前
14秒前
掌灯师完成签到,获得积分10
15秒前
情怀应助谦让的醉波采纳,获得10
15秒前
单小芫完成签到 ,获得积分10
16秒前
vv完成签到 ,获得积分10
19秒前
烂漫续完成签到,获得积分10
19秒前
情怀应助chase采纳,获得10
19秒前
科研xiao白发布了新的文献求助10
19秒前
tongzehui完成签到 ,获得积分10
20秒前
29秒前
31秒前
CipherSage应助任小九采纳,获得10
35秒前
雪原白鹿完成签到 ,获得积分10
36秒前
卷卷完成签到,获得积分10
37秒前
38秒前
岚叶完成签到,获得积分10
45秒前
Ava应助苗啊苗采纳,获得10
52秒前
53秒前
筱筱完成签到,获得积分10
54秒前
Zyl发布了新的文献求助10
55秒前
卷卷发布了新的文献求助10
58秒前
光芒万张在河之周完成签到,获得积分10
59秒前
岚叶发布了新的文献求助10
59秒前
科研通AI2S应助miao采纳,获得10
1分钟前
1分钟前
充电宝应助ying采纳,获得10
1分钟前
Mineme发布了新的文献求助30
1分钟前
木子发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161053
求助须知:如何正确求助?哪些是违规求助? 2812453
关于积分的说明 7895410
捐赠科研通 2471252
什么是DOI,文献DOI怎么找? 1315934
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094