分解水
双功能
海水
电解
催化作用
析氧
材料科学
磷化物
无机化学
化学工程
贵金属
吸附
制氢
电解质
化学
冶金
金属
电极
电化学
地质学
生物化学
有机化学
物理化学
工程类
海洋学
光催化
作者
Fangming Zhang,Yilin Liu,Yu Fang,Hongjing Pang,Xuan Zhou,Dongyang Li,Wenqi Ma,Qian Zhou,Yuxue Mo,Haiqing Zhou
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-01-03
卷期号:17 (2): 1681-1692
被引量:104
标识
DOI:10.1021/acsnano.2c11844
摘要
Given the abundant reserves of seawater and the scarcity of freshwater, real seawater electrolysis is a more economically appealing technology for hydrogen production relative to orthodox freshwater electrolysis. However, this technology is greatly precluded by the undesirable chlorine oxidation reaction and severe chloride corrosion at the anode, further restricting the catalytic efficiency of overall seawater splitting. Herein, a feasible strategy by engineering multifunctional collaborative catalytic interfaces is reported to develop porous metal nitride/phosphide heterostructure arrays anchoring on conductive Ni2P surfaces with affluent iron sites. Collaborative catalytic interfaces among iron phosphide, bimetallic nitride, and porous Ni2P supports play a positive role in improving water adsorption/dissociation and hydrogen adsorption behaviors of active Fe sites evidenced by theoretical calculations for hydrogen evolution reactions, and enhancing oxygenated species adsorption and nitrate-rich passivating layers resistant to chloride corrosion for oxygen evolution reaction, thus cooperatively propelling high-performance bifunctional seawater splitting. The resultant material Fe2P/Ni1.5Co1.5N/Ni2P performs excellently as a self-standing bifunctional catalyst for alkaline seawater splitting. It requires extremely low cell voltages of 1.624 and 1.742 V to afford current densities of 100 and 500 mA/cm2 in 1 M KOH seawater electrolytes, respectively, along with superior long-term stability, outperforming nearly all the ever-reported non-noble bifunctional electrocatalysts and benchmark Pt/IrO2 coupled electrodes for freshwater/seawater electrolysis. This work presents an effective strategy for greatly enhancing the catalytic efficiency of non-noble catalysts toward green hydrogen production from seawater electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI