A Novel Scenarios Engineering Methodology for Foundation Models in Metaverse

计算机科学 虚拟实境 互动性 基础(证据) 数据科学 敏捷软件开发 人机交互 软件工程 万维网 虚拟现实 历史 考古
作者
Xuan Li,Yonglin Tian,Peijun Ye,Haibin Duan,Fei–Yue Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (4): 2148-2159 被引量:64
标识
DOI:10.1109/tsmc.2022.3228594
摘要

Foundation models are used to train a broad system of general data to build adaptations to new bottlenecks. Typically, they contain hundreds of billions of hyperparameters that have been trained with hundreds of gigabytes of data. However, this type of black-box vulnerability places foundation models at risk of data poisoning attacks that are designed to pass on misinformation or purposely introduce machine bias. Moreover, ordinary researchers have not been able to completely participate due to the rise in deployment standards. This study introduces the theoretical framework of scenarios engineering (SE) for building accessible and reliable foundation models in metaverse, namely, “SE-enabled foundation models in metaverse.” Particularly, the research framework comprises a six-layer architecture (infrastructure layer, operation layer, knowledge layer, intelligence layer, management layer, and interaction layer), which can provide controllability, trustworthiness, and interactivity for the foundation models in metaverse. This creates closed-loop, virtual–real, and human–machine environments that provides the best indices and goals for the foundation models, which allows us to fully validate and calibrate the corresponding models. Then, examples of use cases from the automotive industry are listed to provide transparency on the possible use and benefits of our approach. Finally, the open research topics of related frameworks are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦发布了新的文献求助30
刚刚
1秒前
2秒前
华仔应助Fancy采纳,获得10
4秒前
瘦瘦的傲松完成签到,获得积分20
4秒前
xaiohuihui完成签到,获得积分10
6秒前
Annie发布了新的文献求助10
6秒前
xuexi完成签到,获得积分10
6秒前
spk发布了新的文献求助10
7秒前
薰硝壤应助炙热芷蕊采纳,获得20
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
生动的鹰完成签到,获得积分10
9秒前
9秒前
戈屿完成签到 ,获得积分10
9秒前
liu发布了新的文献求助10
10秒前
多学一分钟顶峰挑老公完成签到,获得积分10
10秒前
无语的冷卉完成签到,获得积分20
10秒前
Sene发布了新的文献求助30
10秒前
lalala发布了新的文献求助10
11秒前
两只鱼完成签到,获得积分10
11秒前
活泼元瑶完成签到,获得积分20
13秒前
互助遵法尚德应助万幸鹿采纳,获得10
14秒前
jimskylxk发布了新的文献求助10
14秒前
hqq完成签到,获得积分10
15秒前
lllll完成签到,获得积分10
17秒前
17秒前
17秒前
甜橙发布了新的文献求助20
17秒前
xuexi发布了新的文献求助10
17秒前
18秒前
元谷雪应助000000采纳,获得10
18秒前
20秒前
K513693050发布了新的文献求助10
21秒前
yins完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149784
求助须知:如何正确求助?哪些是违规求助? 2800775
关于积分的说明 7841901
捐赠科研通 2458351
什么是DOI,文献DOI怎么找? 1308425
科研通“疑难数据库(出版商)”最低求助积分说明 628499
版权声明 601706