Linewidth narrowing in self-injection-locked on-chip lasers

激光线宽 量子点激光器 激光阈值 光电子学 激光器 材料科学 量子点 量子阱 半导体激光器理论 物理 光学
作者
E. Alkhazraji,Weng W. Chow,Frédéric Grillot,John E. Bowers,Yating Wan
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:12 (1) 被引量:22
标识
DOI:10.1038/s41377-023-01172-9
摘要

Stable laser emission with narrow linewidth is of critical importance in many applications, including coherent communications, LIDAR, and remote sensing. In this work, the physics underlying spectral narrowing of self-injection-locked on-chip lasers to Hz-level lasing linewidth is investigated using a composite-cavity structure. Heterogeneously integrated III-V/SiN lasers operating with quantum-dot and quantum-well active regions are analyzed with a focus on the effects of carrier quantum confinement. The intrinsic differences are associated with gain saturation and carrier-induced refractive index, which are directly connected with 0- and 2-dimensional carrier densities of states. Results from parametric studies are presented for tradeoffs involved with tailoring the linewidth, output power, and injection current for different device configurations. Though both quantum-well and quantum-dot devices show similar linewidth-narrowing capabilities, the former emits at a higher optical power in the self-injection-locked state, while the latter is more energy-efficient. Lastly, a multi-objective optimization analysis is provided to optimize the operation and design parameters. For the quantum-well laser, minimizing the number of quantum-well layers is found to decrease the threshold current without significantly reducing the output power. For the quantum-dot laser, increasing the quantum-dot layers or density in each layer increases the output power without significantly increasing the threshold current. These findings serve to guide more detailed parametric studies to produce timely results for engineering design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
读研好难发布了新的文献求助10
刚刚
Adian完成签到,获得积分10
1秒前
Huaiman完成签到,获得积分10
1秒前
OvO完成签到,获得积分10
1秒前
expuery完成签到,获得积分10
1秒前
sunwending发布了新的文献求助10
1秒前
蒋时晏应助Lam采纳,获得30
2秒前
充电宝应助西子阳采纳,获得10
3秒前
OvO发布了新的文献求助10
3秒前
嗨皮y完成签到 ,获得积分20
3秒前
科研通AI2S应助majf采纳,获得10
4秒前
不知道叫什么完成签到,获得积分10
4秒前
zhaomr完成签到,获得积分10
4秒前
4秒前
4秒前
平常的擎宇完成签到,获得积分10
5秒前
Hello应助白华苍松采纳,获得10
5秒前
碳土不凡发布了新的文献求助10
6秒前
耍酷花卷完成签到,获得积分10
6秒前
小丛完成签到 ,获得积分10
6秒前
6秒前
LZZ完成签到,获得积分10
6秒前
小木虫完成签到,获得积分10
7秒前
小二郎应助无情山水采纳,获得10
7秒前
7秒前
大晨发布了新的文献求助10
7秒前
赖道之发布了新的文献求助10
8秒前
8秒前
1111发布了新的文献求助10
8秒前
坤坤发布了新的文献求助10
8秒前
酷波er应助包容的剑采纳,获得10
8秒前
9秒前
9秒前
genoy完成签到,获得积分10
9秒前
乔乔完成签到,获得积分10
9秒前
吾问无为谓完成签到,获得积分20
11秒前
11秒前
11秒前
花椒泡茶完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762