Image Segmentation Semantic Communication over Internet of Vehicles

计算机科学 编码器 人工智能 计算机视觉 分割 发射机 图像分割 特征(语言学) 特征提取 编码(社会科学) 计算机网络 频道(广播) 数学 语言学 统计 操作系统 哲学
作者
Qiang Pan,Haonan Tong,Jie Lv,Tao Luo,Zhilong Zhang,Changchuan Yin,Jianfeng Li
标识
DOI:10.1109/wcnc55385.2023.10118717
摘要

In this paper, the problem of semantic-based efficient image transmission is studied over the Internet of Vehicles (IoV). In the considered model, a vehicle shares massive amount of visual data perceived by its visual sensors to assist other vehicles in making driving decisions. However, it is hard to maintain a high reliable visual data transmission due to the limited spectrum resources. To tackle this problem, a semantic communication approach is introduced to reduce the transmission data amount while ensuring the semantic-level accuracy. Particularly, an image segmentation semantic communication (ISSC) system is proposed, which can extract the semantic features from the perceived images and transmit the features to the receiving vehicle that reconstructs the image segmentations. The ISSC system consists of an encoder and a decoder at the transmitter and the receiver, respectively. To accurately extract the image semantic features, the ISSC system encoder employs a Swin Transformer based multi-scale semantic feature extractor. Then, to resist the wireless noise and reconstruct the image segmentation, a semantic feature decoder and a reconstructor are designed at the receiver. Simulation results show that the proposed ISSC system can reconstruct the image segmentation accurately with a high compression ratio, and can achieve robust transmission performance against channel noise, especially at the low signal-to-noise ratio (SNR). In terms of mean Intersection over Union (mIoU), the ISSC system can achieve an increase by 75%, compared to the baselines using traditional coding methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会长大的幸福完成签到 ,获得积分10
1秒前
iNk应助lalala采纳,获得10
1秒前
2秒前
无情念之发布了新的文献求助10
2秒前
100发布了新的文献求助10
2秒前
wanyanjin完成签到,获得积分10
3秒前
周老八发布了新的文献求助10
3秒前
3秒前
3秒前
YL发布了新的文献求助10
4秒前
qucheng完成签到 ,获得积分10
4秒前
Athos_1992完成签到,获得积分10
4秒前
隐形曼青应助一平采纳,获得10
4秒前
5秒前
写不出来完成签到,获得积分10
6秒前
儒雅醉冬完成签到,获得积分10
6秒前
lzp完成签到 ,获得积分10
6秒前
杰森斯坦虎完成签到,获得积分10
6秒前
6秒前
7秒前
叭叭完成签到,获得积分10
7秒前
Accept完成签到,获得积分10
7秒前
W哇完成签到,获得积分10
8秒前
肖肖完成签到,获得积分10
8秒前
8秒前
super小萌萌完成签到,获得积分10
8秒前
April完成签到 ,获得积分10
8秒前
雪白问兰应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得20
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
maox1aoxin应助科研通管家采纳,获得80
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
zhong完成签到,获得积分10
9秒前
36456657应助科研通管家采纳,获得10
9秒前
100完成签到,获得积分20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672