Prediction of strain, inter-layer interaction and critical current in CORC® wires under axial strain by T-A modeling

材料科学 磁铁 极限抗拉强度 泊松比 压力(语言学) 磁场 圆筒应力 复合材料 导电体 变形(气象学) 芯(光纤) 机械工程 泊松分布 物理 统计 量子力学 工程类 哲学 语言学 数学
作者
Keyang Wang,Yuanwen Gao,V A Anvar,Kyle Radcliff,Jeremy Weiss,D C van der Laan,Youhe Zhou,Arend Nijhuis
出处
期刊:Superconductor Science and Technology [IOP Publishing]
卷期号:35 (10): 105012-105012 被引量:22
标识
DOI:10.1088/1361-6668/ac8a23
摘要

Abstract Superconducting conductors on round core (CORC ® ) cables and wires can meet the needs of large high-field magnets, such as particle accelerators and compact nuclear fusion machines, due to their simple cabling process, high current-carrying capacity and reliable operation under high mechanical stresses. Many high-field magnets require CORC ® cables to carry a current of thousands of amperes in a background magnetic field exceeding 20 T. As a result, the large electromagnetic forces will deform the cable in the axial direction due to hoop stress and in the transverse direction by compressive stress. Therefore, it is essential to determine the irreversible deformation limit of the CORC ® cable under axial tensile load and optimize the cabling parameters to potentially extend this limit. Analytical and numerical methods are developed to assess the performance degradation of CORC ® wires under axial tensile load. The strain level, interlayer contact pressure and friction and their impact on the critical current are calculated by combining the mechanical response and the T-A method. Analyzing the results shows that the winding angle of the tape and the Poisson’s ratio of the inner core are key factors affecting the irreversible tensile strain limit of CORC ® wires. The smaller the winding angle and the higher the Poisson’s ratio of the inner core, the higher the irreversible tensile strain limit. For multi-layer CORC ® wires, the initial contact pressure caused by the cabling process must also be considered. The inter-layer interaction is coupled with the tape strain of each layer. The results of this research can serve as a basis for optimizing and designing CORC ® wires with extended irreversible strain limits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
4秒前
开朗元槐发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
ding应助刻苦的士萧采纳,获得10
5秒前
科研通AI5应助英俊白莲采纳,获得30
6秒前
科研通AI5应助笑面客采纳,获得10
7秒前
7秒前
免疫与代谢研究完成签到,获得积分10
8秒前
weddcf发布了新的文献求助10
8秒前
8秒前
venger发布了新的文献求助10
9秒前
9秒前
wanci应助可yi采纳,获得10
9秒前
DZ发布了新的文献求助10
9秒前
10秒前
10秒前
sijin1216完成签到,获得积分10
10秒前
青春完成签到 ,获得积分10
11秒前
oo关注了科研通微信公众号
13秒前
烟花应助yema采纳,获得10
13秒前
13秒前
gaberella发布了新的文献求助10
14秒前
君君发布了新的文献求助10
14秒前
ikea1984发布了新的文献求助10
15秒前
852应助微笑采纳,获得10
15秒前
情怀应助微笑采纳,获得10
15秒前
华仔应助微笑采纳,获得10
15秒前
顾矜应助微笑采纳,获得10
15秒前
CipherSage应助微笑采纳,获得20
15秒前
无花果应助微笑采纳,获得10
15秒前
15秒前
orixero应助XYX采纳,获得30
16秒前
17秒前
李爱国应助称心曼安采纳,获得10
17秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769859
求助须知:如何正确求助?哪些是违规求助? 3314919
关于积分的说明 10174140
捐赠科研通 3030186
什么是DOI,文献DOI怎么找? 1662685
邀请新用户注册赠送积分活动 795067
科研通“疑难数据库(出版商)”最低求助积分说明 756560