Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data

高光谱成像 多光谱图像 青枯病 植被(病理学) 天蓬 遥感 反射率 园艺 生物 医学 植物 地理 光学 物理 病理
作者
Tingting Chen,Weiguang Yang,Huajian Zhang,Bingyu Zhu,Ruier Zeng,Xinyue Wang,Shuaibin Wang,Leidi Wang,Haixia Qi,Yubin Lan,Lei Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:177: 105708-105708 被引量:39
标识
DOI:10.1016/j.compag.2020.105708
摘要

Bacterial wilt (BW) caused by Ralstonia solanacearum is the most serious peanut diseases in South China. Its timely and accurate detection is important to opportunely implement disease management practices. This study aimed to establish and select the most appropriate leaf-level reflectance-based vegetation indices for BW detection and to determine whether these new indices can be used in UAV multispectral imaging for peanut BW detection. ANOVA, multilayer perception, and the reduced sampling method were used to analyze the spectral data. The most effective detection wavelengths, 730 nm and 790 nm, were used for developing new peanut BW detection indices. The 15 hyperspectral indices with highest correlation coefficients (R > 0.80) were obtained based on 46 hyperspectral indices and the BW severity results from Experiment 1. By testing the above vegetation indices at the leaf level and in UAV images using different methods and the results from Experiment 2, it was found that four of the developed indices (BWI1, BWI3, BWI4, and BWI6) performed appropriately (P < 0.01, M > 1.0), as they could distinguish between healthy and BW infected peanut plants, even if the plant presented minimal external symptoms. Our findings confirmed the potential of hyperspectral remote sensing including leaf-level and UAV images for peanut BW detection at early disease stages and discrimination of different BW severity levels based on vegetation indices derived from leaf-level reflectance. Timely BW severity determination based on our results could provide farmers with useful information to control peanut BW disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fcyyc发布了新的文献求助10
刚刚
机智小丸子完成签到,获得积分10
刚刚
爱吃冬瓜完成签到,获得积分10
刚刚
1秒前
1秒前
科研通AI5应助欢欢采纳,获得20
1秒前
2秒前
唐水之发布了新的文献求助10
2秒前
wangxinyao完成签到,获得积分10
3秒前
puzhongjiMiQ发布了新的文献求助10
3秒前
vitamin完成签到 ,获得积分10
4秒前
4秒前
明天会更美好完成签到,获得积分10
5秒前
5秒前
yuyu发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
倪铁头发布了新的文献求助10
7秒前
大个应助某人金采纳,获得10
7秒前
kingmin应助荞面小肉包采纳,获得10
7秒前
小鱼完成签到,获得积分10
7秒前
mrking发布了新的文献求助20
8秒前
欢欢完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
爆米花应助yuyu采纳,获得10
10秒前
Z.Z完成签到 ,获得积分10
10秒前
10秒前
10秒前
星如繁花完成签到,获得积分10
10秒前
11秒前
njh完成签到,获得积分20
11秒前
charlins发布了新的文献求助30
11秒前
fengqianxv完成签到 ,获得积分10
12秒前
啊湫超爱学习完成签到,获得积分10
12秒前
12秒前
13秒前
无聊的月饼完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667514
求助须知:如何正确求助?哪些是违规求助? 3226148
关于积分的说明 9767859
捐赠科研通 2936008
什么是DOI,文献DOI怎么找? 1608088
邀请新用户注册赠送积分活动 759514
科研通“疑难数据库(出版商)”最低求助积分说明 735404