Disease progression model of 4T1 metastatic breast cancer

转移 乳腺癌 转移性乳腺癌 肺癌 肿瘤科 医学 原发性肿瘤 癌症 内科学 病理
作者
Liang Yang,Yong Ling,Xiao Zhu,Yaoyao Feng,Yu Fu,Daming Kong,Wei Lu,Tianyan Zhou
出处
期刊:Journal of Pharmacokinetics and Pharmacodynamics [Springer Nature]
卷期号:47 (1): 105-116 被引量:29
标识
DOI:10.1007/s10928-020-09673-5
摘要

Cancer metastasis is the main cause of death in various types of cancer. However, in the field of pharmacometrics, cancer disease progression models focus on the growth of primary tumors with tumor volume or weight as target values, while the metastasis process is less mentioned. We propose a series of mathematical models to quantitatively describe and predict the disease progression of 4T1 breast cancer in the aspect of primary breast tumor, lung metastasis and white blood cell. The 4T1 cells were injected into breast fat pad of female BALB/c mice to establish an animal model of breast cancer metastasis. The number and volume of lung metastases at different times were measured. Based on the above data, a disease progression model of breast cancer lung metastasis was established and parameter values were estimated. The white blood cell growth and the primary tumor growth of 4T1 mouse are also modeled. The established models can describe the lung metastasis of 4T1 breast cancer in three aspects: (1) the increase in metastasis number; (2) the growth of metastasis volume; (3) metastasis number-size distribution at different time points. Compared with the prior metastasis models based on von Forester equation, our models distinguished the growth rate of primary tumor and metastasis and got parameter values for 4T1 mouse model. And the current models optimized the metastasis number-size distribution model by utilizing logistic function instead of the prior power function. This study provides a comprehensive description of lung metastasis progression for 4T1 breast cancer model, as well as an alternative disease progression model structure for further pharmacodynamics modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyiziyi发布了新的文献求助10
1秒前
李爱国应助自觉芝麻采纳,获得10
1秒前
明理的又柔完成签到 ,获得积分10
2秒前
akber123完成签到,获得积分10
2秒前
3秒前
11完成签到 ,获得积分20
3秒前
5秒前
8秒前
不爱吃韭菜完成签到 ,获得积分10
8秒前
aprilvanilla完成签到,获得积分10
9秒前
9秒前
甜橙完成签到 ,获得积分10
10秒前
李健的小迷弟应助ziyiziyi采纳,获得10
10秒前
平常的三问完成签到 ,获得积分10
10秒前
欢呼问旋完成签到,获得积分10
12秒前
在水一方应助大头不愁采纳,获得10
12秒前
南絮发布了新的文献求助10
12秒前
烟花应助小昕采纳,获得30
12秒前
第七班关注了科研通微信公众号
13秒前
刘哈哈完成签到 ,获得积分10
13秒前
李健应助谢谢采纳,获得10
13秒前
英姑应助11采纳,获得10
16秒前
17秒前
小脑斧完成签到,获得积分10
18秒前
佳足发布了新的文献求助10
18秒前
20秒前
ymh完成签到,获得积分10
21秒前
喜羊羊完成签到 ,获得积分10
22秒前
Mrivy应助seismic采纳,获得10
22秒前
温谷完成签到 ,获得积分10
23秒前
李婷婷发布了新的文献求助10
24秒前
南絮完成签到,获得积分10
24秒前
搜集达人应助LH采纳,获得10
24秒前
heavenhorse应助长情青丝采纳,获得30
24秒前
27秒前
jpc发布了新的文献求助10
27秒前
123完成签到 ,获得积分10
28秒前
杨秋月完成签到,获得积分10
29秒前
llg完成签到,获得积分10
30秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461286
求助须知:如何正确求助?哪些是违规求助? 3054997
关于积分的说明 9046106
捐赠科研通 2744930
什么是DOI,文献DOI怎么找? 1505743
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264