沉降时间
同步(交流)
应用数学
人工神经网络
数学
订单(交换)
星团(航天器)
分数阶微积分
正规化(语言学)
指数稳定性
计算机科学
控制理论(社会学)
拓扑(电路)
物理
非线性系统
人工智能
组合数学
经济
阶跃响应
控制工程
工程类
程序设计语言
控制(管理)
量子力学
财务
作者
Peng Liu,Zhigang Zeng,Jun Wang
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2020-11-01
卷期号:31 (11): 4956-4967
被引量:83
标识
DOI:10.1109/tnnls.2019.2962006
摘要
This article is devoted to the cluster synchronization issue of coupled fractional-order neural networks. By introducing the stability theory of fractional-order differential systems and the framework of Filippov regularization, some sufficient conditions are derived for ascertaining the asymptotic and finite-time cluster synchronization of coupled fractional-order neural networks, respectively. In addition, the upper bound of the settling time for finite-time cluster synchronization is estimated. Compared with the existing works, the results herein are applicable for fractional-order systems, which could be regarded as an extension of integer-order ones. A numerical example with different cases is presented to illustrate the validity of theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI