亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adversarial Multimodal Representation Learning for Click-Through Rate Prediction

模式 模态(人机交互) 计算机科学 对抗制 人工智能 多模式学习 机器学习 互补性(分子生物学) 代表(政治) 冗余(工程) 人工神经网络 不变(物理) 自然语言处理 数学 遗传学 生物 政治 操作系统 政治学 社会学 法学 数学物理 社会科学
作者
Xiang Li,Chao Wang,Jiwei Tan,Xiaoyi Zeng,Dan Ou,Dan Ou,Bo Zheng
标识
DOI:10.1145/3366423.3380163
摘要

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zai完成签到 ,获得积分10
3秒前
4秒前
kyfbrahha完成签到 ,获得积分10
4秒前
19秒前
27秒前
50秒前
胡娇发布了新的文献求助10
53秒前
taoxz521完成签到 ,获得积分10
54秒前
标致诗双完成签到,获得积分10
1分钟前
Noctis发布了新的文献求助10
1分钟前
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
踏实的研完成签到,获得积分10
1分钟前
研友_闾丘枫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
实力不允许完成签到 ,获得积分10
2分钟前
TXZ06完成签到,获得积分10
2分钟前
xqq完成签到,获得积分10
3分钟前
3分钟前
3分钟前
一路微笑完成签到,获得积分10
3分钟前
4分钟前
JamesPei应助liuyannong采纳,获得10
4分钟前
4分钟前
D4发布了新的文献求助10
4分钟前
4分钟前
gszy1975完成签到,获得积分10
4分钟前
Frank发布了新的文献求助10
5分钟前
D4完成签到,获得积分10
5分钟前
HaiJaine应助Noctis采纳,获得10
5分钟前
随机数学完成签到,获得积分10
5分钟前
5分钟前
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
liuyannong发布了新的文献求助10
5分钟前
Frank发布了新的文献求助10
5分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Free Will in the Flesh 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081568
求助须知:如何正确求助?哪些是违规求助? 2734399
关于积分的说明 7532720
捐赠科研通 2383882
什么是DOI,文献DOI怎么找? 1264075
科研通“疑难数据库(出版商)”最低求助积分说明 612561
版权声明 597578