亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybridization of graphene oxide and mesoporous bioactive glass: Micro-space network structure enhance polymer scaffold

材料科学 介孔材料 氧化物 聚合物 硅醇 生物活性玻璃 化学工程 介孔二氧化硅 复合数 表面改性 复合材料 有机化学 化学 工程类 催化作用 冶金
作者
Cijun Shuai,Yong Xu,Pei Feng,Zhenyu Zhao,Youwen Deng
出处
期刊:Journal of The Mechanical Behavior of Biomedical Materials [Elsevier]
卷期号:109: 103827-103827 被引量:14
标识
DOI:10.1016/j.jmbbm.2020.103827
摘要

Graphene oxide (GO) and mesoporous bioactive glass (MBG) are commonly used to improve the mechanical and biological properties of polymer scaffolds, respectively. Nevertheless, their single introduction to polymers may encounter problems with uneven dispersion due to nano-aggregation effects. In this work, a GO and MBG hybrid with micro-space network structure were prepared by a chemical reduction-coagulation method to solve these problems. GO and MBG were first uniformly mixed in an alkaline aqueous dispersion. Subsequently, GO was partially reduced by introducing dopamine and co-coagulated with MBG, and then assembled into a GO@PDA@MBG hybrid structure under electrostatic effect. Specifically, the ring opening and deoxygenation reaction between the oxygen-containing functional group of GO and the amine group of dopamine achieves functionalization and partial reduction of GO. In addition, the hydrogen bond between the amine group of dopamine and the silanol hydroxyl group of MBG promotes the coagulation of MBG on GO@PDA. The hybrid structure was then mixed into polymer matrix to prepare a composite scaffold by a laser additive manufacturing process. The results showed that GO @ PDA @ MBG hybrid structure increased the tensile strength and modulus of polymer scaffold from 5.8 MPa and 312.2 MPa to 14.1 MPa and 539.7 MPa, respectively. The enhanced mechanical properties can be attributed to the pinning and crack strengthening effect of GO@PDA@MBG hybrid structure in polymer matrix. Besides, the scaffold also significantly promotes adhesion and proliferation of osteoblasts, demonstrating good biological properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜如娆关注了科研通微信公众号
刚刚
在水一方应助研友_LXd2gL采纳,获得10
1秒前
阿姊完成签到 ,获得积分10
1秒前
Siriluck完成签到 ,获得积分10
4秒前
14秒前
brwen完成签到,获得积分10
16秒前
非泥完成签到,获得积分10
17秒前
桐桐应助lotus采纳,获得1000
19秒前
KSAcc发布了新的文献求助10
21秒前
不羡江中仙完成签到 ,获得积分10
23秒前
26秒前
JL完成签到 ,获得积分10
28秒前
29秒前
何敏娟发布了新的文献求助10
29秒前
合一海盗完成签到,获得积分10
30秒前
打打应助科研通管家采纳,获得10
31秒前
fire应助科研通管家采纳,获得20
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
杳鸢应助科研通管家采纳,获得20
31秒前
KSAcc完成签到,获得积分20
33秒前
Tim完成签到 ,获得积分10
35秒前
研友_5Y9Z75完成签到 ,获得积分0
38秒前
tjnksy完成签到,获得积分10
39秒前
和光同尘发布了新的文献求助20
41秒前
kytm完成签到,获得积分10
41秒前
44秒前
momi完成签到 ,获得积分10
44秒前
ding应助Omni采纳,获得10
46秒前
9527King完成签到,获得积分10
48秒前
51秒前
55秒前
_ban发布了新的文献求助10
1分钟前
1分钟前
88C真是太神奇啦完成签到 ,获得积分10
1分钟前
TTTTTT发布了新的文献求助10
1分钟前
eve完成签到,获得积分20
1分钟前
ZYY完成签到,获得积分10
1分钟前
1分钟前
guan完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491275
求助须知:如何正确求助?哪些是违规求助? 3077880
关于积分的说明 9151019
捐赠科研通 2770422
什么是DOI,文献DOI怎么找? 1520328
邀请新用户注册赠送积分活动 704572
科研通“疑难数据库(出版商)”最低求助积分说明 702262