作者
Laura M. Paulin,Amanda Gassett,Neil E. Alexis,Kipruto Kirwa,Richard E. Kanner,Stephen P. Peters,Jerry A. Krishnan,Robert Paine,Mark T. Dransfield,Prescott G. Woodruff,Christopher B. Cooper,R. Graham Barr,Alejandro P. Comellas,C.S. Pirozzi,MeiLan K. Han,Eric A. Hoffman,Fernando J. Martínez,Han Woo,Roger D. Peng,Ashraf Fawzy,Nirupama Putcha,Patrick N. Breysse,Joel D. Kaufman,Nadia N. Hansel,for the GARFIELD‐AF Investigators
摘要
Few studies have investigated the association of long-term ambient ozone exposures with respiratory morbidity among individuals with a heavy smoking history.To investigate the association of historical ozone exposure with risk of chronic obstructive pulmonary disease (COPD), computed tomography (CT) scan measures of respiratory disease, patient-reported outcomes, disease severity, and exacerbations in smokers with or at risk for COPD.This multicenter cross-sectional study, conducted from November 1, 2010, to July 31, 2018, obtained data from the Air Pollution Study, an ancillary study of SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study). Data analyzed were from participants enrolled at 7 (New York City, New York; Baltimore, Maryland; Los Angeles, California; Ann Arbor, Michigan; San Francisco, California; Salt Lake City, Utah; and Winston-Salem, North Carolina) of the 12 SPIROMICS clinical sites. Included participants had historical ozone exposure data (n = 1874), were either current or former smokers (≥20 pack-years), were with or without COPD, and were aged 40 to 80 years at baseline. Healthy persons with a smoking history of 1 or more pack-years were excluded from the present analysis.The 10-year mean historical ambient ozone concentration at participants' residences estimated by cohort-specific spatiotemporal modeling.Spirometry-confirmed COPD, chronic bronchitis diagnosis, CT scan measures (emphysema, air trapping, and airway wall thickness), 6-minute walk test, modified Medical Research Council (mMRC) Dyspnea Scale, COPD Assessment Test (CAT), St. George's Respiratory Questionnaire (SGRQ), postbronchodilator forced expiratory volume in the first second of expiration (FEV1) % predicted, and self-report of exacerbations in the 12 months before SPIROMICS enrollment, adjusted for demographics, smoking, and job exposure.A total of 1874 SPIROMICS participants were analyzed (mean [SD] age, 64.5 [8.8] years; 1479 [78.9%] white; and 1013 [54.1%] male). In adjusted analysis, a 5-ppb (parts per billion) increase in ozone concentration was associated with a greater percentage of emphysema (β = 0.94; 95% CI, 0.25-1.64; P = .007) and percentage of air trapping (β = 1.60; 95% CI, 0.16-3.04; P = .03); worse scores for the mMRC Dyspnea Scale (β = 0.10; 95% CI, 0.03-0.17; P = .008), CAT (β = 0.65; 95% CI, 0.05-1.26; P = .04), and SGRQ (β = 1.47; 95% CI, 0.01-2.93; P = .048); lower FEV1% predicted value (β = -2.50; 95% CI, -4.42 to -0.59; P = .01); and higher odds of any exacerbation (odds ratio [OR], 1.37; 95% CI, 1.12-1.66; P = .002) and severe exacerbation (OR, 1.37; 95% CI, 1.07-1.76; P = .01). No association was found between historical ozone exposure and chronic bronchitis, COPD, airway wall thickness, or 6-minute walk test result.This study found that long-term historical ozone exposure was associated with reduced lung function, greater emphysema and air trapping on CT scan, worse patient-reported outcomes, and increased respiratory exacerbations for individuals with a history of heavy smoking. The association between ozone exposure and adverse respiratory outcomes suggests the need for continued reevaluation of ambient pollution standards that are designed to protect the most vulnerable members of the US population.