Differentiation of Benign from Malignant Pulmonary Nodules by Using a Convolutional Neural Network to Determine Volume Change at Chest CT

医学 磨玻璃样改变 置信区间 放射科 核医学 结核(地质) 肺孤立结节 体积热力学 卷积神经网络 计算机断层摄影术 人工智能 腺癌 内科学 癌症 古生物学 物理 生物 量子力学 计算机科学
作者
Yoshiharu Ohno,Kota Aoyagi,Atsushi Yaguchi,Shinichiro Seki,Yoshiko Ueno,Yuji Kishida,Daisuke Takenaka,Takeshi Yoshikawa
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (2): 432-443 被引量:28
标识
DOI:10.1148/radiol.2020191740
摘要

Background Deep learning may help to improve computer-aided detection of volume (CADv) measurement of pulmonary nodules at chest CT. Purpose To determine the efficacy of a deep learning method for improving CADv for measuring the solid and ground-glass opacity (GGO) volumes of a nodule, doubling time (DT), and the change in volume at chest CT. Materials and Methods From January 2014 to December 2016, patients with pulmonary nodules at CT were retrospectively reviewed. CADv without and with a convolutional neural network (CNN) automatically determined total nodule volume change per day and DT. Area under the curves (AUCs) on a per-nodule basis and diagnostic accuracy on a per-patient basis were compared among all indexes from CADv with and without CNN for differentiating benign from malignant nodules. Results The CNN training set was 294 nodules in 217 patients, the validation set was 41 nodules in 32 validation patients, and the test set was 290 nodules in 188 patients. A total of 170 patients had 290 nodules (mean size ± standard deviation, 11 mm ± 5; range, 4–29 mm) diagnosed as 132 malignant nodules and 158 benign nodules. There were 132 solid nodules (46%), 106 part-solid nodules (36%), and 52 ground-glass nodules (18%). The test set results showed that the diagnostic performance of the CNN with CADv for total nodule volume change per day was larger than DT of CADv with CNN (AUC, 0.94 [95% confidence interval {CI}: 0.90, 0.96] vs 0.67 [95% CI: 0.60, 0.74]; P < .001) and CADv without CNN (total nodule volume change per day: AUC, 0.69 [95% CI: 0.62, 0.75]; P < .001; DT: AUC, 0.58 [95% CI: 0.51, 0.65]; P < .001). The accuracy of total nodule volume change per day of CADv with CNN was significantly higher than that of CADv without CNN (P < .001) and DT of both methods (P < .001). Conclusion Convolutional neural network is useful for improving accuracy of computer-aided detection of volume measurement and nodule differentiation capability at CT for patients with pulmonary nodules. © RSNA, 2020 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助朱小小采纳,获得10
刚刚
ding应助小强采纳,获得10
1秒前
atom完成签到,获得积分10
1秒前
专一的映容完成签到,获得积分20
2秒前
含羞草发布了新的文献求助30
2秒前
2秒前
洪东智完成签到,获得积分10
2秒前
lagom发布了新的文献求助30
3秒前
4秒前
5秒前
13679165979完成签到,获得积分10
7秒前
槛外土馒头完成签到,获得积分10
8秒前
苏打发布了新的文献求助10
9秒前
完美世界应助Alex采纳,获得20
9秒前
光亮中道完成签到,获得积分20
9秒前
10秒前
所所应助阿啦啦啦啦采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
shenwei发布了新的文献求助20
12秒前
14秒前
14秒前
小强发布了新的文献求助10
15秒前
guanhao完成签到,获得积分10
16秒前
火星的雪发布了新的文献求助10
16秒前
gyacgbjd发布了新的文献求助10
17秒前
17秒前
暮满杉发布了新的文献求助10
17秒前
Lds发布了新的文献求助10
18秒前
19秒前
Eve丶Paopaoxuan应助哈哈哈采纳,获得10
20秒前
三更笔舞发布了新的文献求助30
22秒前
22秒前
Snail6发布了新的文献求助10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561109
求助须知:如何正确求助?哪些是违规求助? 3134880
关于积分的说明 9410106
捐赠科研通 2835227
什么是DOI,文献DOI怎么找? 1558404
邀请新用户注册赠送积分活动 728160
科研通“疑难数据库(出版商)”最低求助积分说明 716705