Global and Local Surrogate-Model-Assisted Differential Evolution for Waterflooding Production Optimization

替代模型 数学优化 差异进化 水准点(测量) 全局优化 计算机科学 最优化问题 数学 大地测量学 地理
作者
Guodong Chen,Kai Zhang,Liming Zhang,Xiaoming Xue,Dezhuang Ji,Chuanjin Yao,Jun Yao,Yongfei Yang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:25 (01): 105-118 被引量:82
标识
DOI:10.2118/199357-pa
摘要

Summary Surrogate models, which have become a popular approach to oil-reservoir production-optimization problems, use a computationally inexpensive approximation function to replace the computationally expensive objective function computed by a numerical simulator. In this paper, a new optimization algorithm called global and local surrogate-model-assisted differential evolution (GLSADE) is introduced for waterflooding production-optimization problems. The proposed method consists of two parts: (1) a global surrogate-model-assisted differential-evolution (DE) part, in which DE is used to generate multiple offspring, and (2) a local surrogate-model-assisted DE part, in which DE is used to search for the optimum of the surrogate. The cooperation between global optimization and local search helps the production-optimization process become more efficient and more effective. Compared with the conventional one-shot surrogate-based approach, the developed method iteratively selects data points to enhance the accuracy of the promising area of the surrogate model, which can substantially improve the optimization process. To the best of our knowledge, the proposed method uses a state-of-the-art surrogate framework for production-optimization problems. The approach is tested on two 100-dimensional benchmark functions, a three-channel model, and the egg model. The results show that the proposed method can achieve higher net present value (NPV) and better convergence speed in comparison with the traditional evolutionary algorithm and other surrogate-assisted optimization methods for production-optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助繁荣的秋采纳,获得10
1秒前
活力热狗完成签到,获得积分10
2秒前
李某发布了新的文献求助10
4秒前
活力热狗发布了新的文献求助10
5秒前
8秒前
9秒前
orixero应助坦率的棉花糖采纳,获得10
9秒前
科研通AI5应助ffx采纳,获得10
10秒前
12秒前
12秒前
敢敢发布了新的文献求助10
14秒前
英俊的铭应助随便吧采纳,获得10
14秒前
海底月完成签到,获得积分10
14秒前
kccccccc发布了新的文献求助10
14秒前
等风的人发布了新的文献求助10
15秒前
16秒前
hxx完成签到,获得积分10
16秒前
丘比特应助金鱼采纳,获得10
17秒前
逻辑猫完成签到,获得积分10
18秒前
18秒前
香蕉觅云应助clean采纳,获得10
20秒前
20秒前
20秒前
别潜然发布了新的文献求助10
21秒前
李健的小迷弟应助敢敢采纳,获得10
22秒前
YoN完成签到,获得积分10
22秒前
大个应助LING采纳,获得10
23秒前
24秒前
ffx发布了新的文献求助10
25秒前
25秒前
帅气的猫猫应助xingxingwang采纳,获得10
29秒前
lalalala发布了新的文献求助10
30秒前
田田圈完成签到,获得积分10
30秒前
34秒前
稳重的御姐完成签到,获得积分10
34秒前
一一完成签到,获得积分10
35秒前
阿莫西林皮蛋完成签到,获得积分10
37秒前
ZzzzSSSNNN发布了新的文献求助10
40秒前
40秒前
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542875
求助须知:如何正确求助?哪些是违规求助? 3120166
关于积分的说明 9341799
捐赠科研通 2818206
什么是DOI,文献DOI怎么找? 1549434
邀请新用户注册赠送积分活动 722146
科研通“疑难数据库(出版商)”最低求助积分说明 712978