Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum

热稳定性 蛋白质工程 木聚糖酶 定向进化 生物化学 突变 突变体 化学 计算生物学 合理设计 生物 遗传学 基因
作者
Fuqiang Ma,Yuan Xie,Manjie Luo,Shuhao Wang,You Hu,Yukun Liu,Yan Feng,Guangyu Yang
出处
期刊:Synthetic and Systems Biotechnology [Elsevier]
卷期号:1 (3): 195-206 被引量:27
标识
DOI:10.1016/j.synbio.2016.09.001
摘要

Cell-free synthetic biology system organizes multiple enzymes (parts) from different sources to implement unnatural catalytic functions. Highly adaption between the catalytic parts is crucial for building up efficient artificial biosynthetic systems. Protein engineering is a powerful technology to tailor various enzymatic properties including catalytic efficiency, substrate specificity, temperature adaptation and even achieve new catalytic functions. However, altering enzymatic pH optimum still remains a challenging task. In this study, we proposed a novel sequence homolog-based protein engineering strategy for shifting the enzymatic pH optimum based on statistical analyses of sequence-function relationship data of enzyme family. By two statistical procedures, artificial neural networks (ANNs) and least absolute shrinkage and selection operator (Lasso), five amino acids in GH11 xylanase family were identified to be related to the evolution of enzymatic pH optimum. Site-directed mutagenesis of a thermophilic xylanase from Caldicellulosiruptor bescii revealed that four out of five mutations could alter the enzymatic pH optima toward acidic condition without compromising the catalytic activity and thermostability. Combination of the positive mutants resulted in the best mutant M31 that decreased its pH optimum for 1.5 units and showed increased catalytic activity at pH < 5.0 compared to the wild-type enzyme. Structure analysis revealed that all the mutations are distant from the active center, which may be difficult to be identified by conventional rational design strategy. Interestingly, the four mutation sites are clustered at a certain region of the enzyme, suggesting a potential "hot zone" for regulating the pH optima of xylanases. This study provides an efficient method of modulating enzymatic pH optima based on statistical sequence analyses, which can facilitate the design and optimization of suitable catalytic parts for the construction of complicated cell-free synthetic biology systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦慧萍发布了新的文献求助10
1秒前
Theone发布了新的文献求助10
1秒前
3秒前
Lilili发布了新的文献求助10
3秒前
科研小白完成签到,获得积分20
3秒前
4秒前
外向半青完成签到,获得积分10
4秒前
4秒前
4秒前
顺利的伊应助狄从灵采纳,获得10
5秒前
吴小苏完成签到,获得积分10
5秒前
OA完成签到,获得积分10
5秒前
6秒前
maple完成签到,获得积分10
6秒前
王汉韬发布了新的文献求助10
6秒前
世界和平完成签到,获得积分10
6秒前
秦慧萍完成签到,获得积分10
6秒前
7秒前
木木酱完成签到,获得积分10
7秒前
陈军应助瘦瘦的寒珊采纳,获得10
8秒前
dy发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
细腻问柳发布了新的文献求助10
10秒前
superspace发布了新的文献求助10
10秒前
新八发布了新的文献求助10
10秒前
11秒前
老王小六发布了新的文献求助10
12秒前
曹雪峰发布了新的文献求助10
12秒前
12秒前
zzuwxj完成签到,获得积分10
12秒前
科研通AI2S应助Jj采纳,获得10
14秒前
senna发布了新的文献求助10
14秒前
llzuo发布了新的文献求助10
15秒前
orixero应助Ge采纳,获得10
16秒前
爽o发布了新的文献求助10
16秒前
汉堡包应助科研进化中采纳,获得10
16秒前
tx完成签到,获得积分10
18秒前
冷漠的布丁完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148527
求助须知:如何正确求助?哪些是违规求助? 2799622
关于积分的说明 7836197
捐赠科研通 2457012
什么是DOI,文献DOI怎么找? 1307684
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601655