🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Intracluster Structured Low-Rank Matrix Analysis Method for Hyperspectral Denoising

降噪 秩(图论) 奇异值分解 模式识别(心理学) 高光谱成像 低秩近似 计算机科学 杠杆(统计) 人工智能 奇异值 矩阵分解 矩阵完成 正规化(语言学) 数学 特征向量 高斯分布 数学分析 物理 汉克尔矩阵 组合数学 量子力学
作者
Wei Wei,Lei Zhang,Yining Jiao,Chunna Tian,Cong Wang,Yanning Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (2): 866-880 被引量:32
标识
DOI:10.1109/tgrs.2018.2862384
摘要

Hyperspectral images (HSIs) denoising aims at eliminating the noise generated during the acquisition and transmission of HSIs. Since denoising is an ill-posed problem, utilizing proper knowledge of HSIs as regularization is essential for a good denoiser. Many HSI denoising methods have been proposed to leverage various prior knowledge, e.g., total variation, sparsity, and so on. Among those knowledge, a low-rank property has been shown to be effective for HSI denoising since it has the ability to deal with the missing values. However, most existing low-rank methods seldom consider mining the useful structures inside the low-rank matrix for a better denoising result. In addition, the rank number needs to be assigned manually. To address these problems, we propose an intracluster structured low-rank matrix analysis method for HSI denoising. First, we divide the original HSI into some clusters by taking advantages of both local similarity and nonlocal similarity structures, with which the resulted clusters are simpler and show more obvious low-rank property. Second, with singular value decomposition on the low-rank matrix in each cluster, the structured sparsity is modeled among the singular values to capture the structure of the low-rank matrix. Finally, an efficient optimization method is proposed to learn the structured sparsity adaptively from the data, as well as to inversely estimate the latent clean HSI from the noisy counterpart. The proposed method can not only obtain better denoising results compared with the-state-of-the-art methods but also automatically determine the rank number. Extensive experimental results demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yihuan发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
地震学牛马完成签到,获得积分10
3秒前
无花果应助万勇采纳,获得10
3秒前
million发布了新的文献求助10
4秒前
清脆涔发布了新的文献求助50
4秒前
4秒前
嗳7发布了新的文献求助10
5秒前
ding应助可爱的诗槐采纳,获得10
6秒前
6秒前
左丘白桃应助11纳采纳,获得20
7秒前
gjq发布了新的文献求助10
8秒前
tk完成签到,获得积分10
8秒前
223发布了新的文献求助10
8秒前
Stone发布了新的文献求助10
8秒前
bloom完成签到,获得积分10
10秒前
万勇完成签到,获得积分10
11秒前
Owen应助hhh采纳,获得10
13秒前
笗一一完成签到 ,获得积分10
13秒前
13秒前
小羊完成签到,获得积分20
14秒前
14秒前
CCC完成签到,获得积分10
16秒前
小蘑菇应助个性醉波采纳,获得10
16秒前
17秒前
17秒前
17秒前
顾矜应助ccc采纳,获得10
18秒前
你才是冰雕完成签到,获得积分10
18秒前
田様应助嗳7采纳,获得10
18秒前
ykiiii发布了新的文献求助10
19秒前
丛玉林发布了新的文献求助10
19秒前
19秒前
阿伟发布了新的文献求助10
20秒前
彭于晏应助轻松大娘采纳,获得10
21秒前
明芬发布了新的文献求助10
21秒前
朴素妙梦发布了新的文献求助10
22秒前
邸增楼发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Generative Machine Learning Models in Medical Image Computing 590
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600008
求助须知:如何正确求助?哪些是违规求助? 3168702
关于积分的说明 9559090
捐赠科研通 2875140
什么是DOI,文献DOI怎么找? 1578599
邀请新用户注册赠送积分活动 742208
科研通“疑难数据库(出版商)”最低求助积分说明 725097