A Machine Learning-Based Framework for Predictive Maintenance of Semiconductor Laser for Optical Communication

可靠性(半导体) 可靠性工程 降级(电信) 计算机科学 半导体激光器理论 激光器 自编码 人工智能 深度学习 电子工程 机器学习 半导体 功率(物理) 工程类 电气工程 光学 物理 量子力学
作者
Khouloud Abdelli,Helmut Grieser,Stephan Pachnicke
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (14): 4698-4708 被引量:12
标识
DOI:10.1109/jlt.2022.3163579
摘要

Semiconductor lasers, one of the key components for optical communication systems, have been rapidly evolving to meet the requirements of next generation optical networks with respect to high speed, low power consumption, small form factor etc. However, these demands have brought severe challenges to the semiconductor laser reliability. Therefore, a great deal of attention has been devoted to improving it and thereby ensuring reliable transmission. In this paper, a predictive maintenance framework using machine learning techniques is proposed for real-time heath monitoring and prognosis of semiconductor laser and thus enhancing its reliability. The proposed approach is composed of three stages: i) real-time performance degradation prediction, ii) degradation detection, and iii) remaining useful life (RUL) prediction. First of all, an attention based gated recurrent unit (GRU) model is adopted for real-time prediction of performance degradation. Then, a convolutional autoencoder is used to detect the degradation or abnormal behavior of a laser, given the predicted degradation performance values. Once an abnormal state is detected, a RUL prediction model based on attention-based deep learning is utilized. Afterwards, the estimated RUL is input for decision making and maintenance planning. The proposed framework is validated using experimental data derived from accelerated aging tests conducted for semiconductor tunable lasers. The proposed approach achieves a very good degradation performance prediction capability with a small root mean square error (RMSE) of 0.01, a good anomaly detection accuracy of 94.24% and a better RUL estimation capability compared to the existing ML-based laser RUL prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑包包大人完成签到,获得积分10
刚刚
zzz完成签到,获得积分10
1秒前
cindy完成签到 ,获得积分10
1秒前
Zbllllll完成签到,获得积分10
2秒前
Deerlu完成签到,获得积分10
3秒前
3秒前
pp发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助cis2014采纳,获得10
5秒前
onw完成签到,获得积分10
6秒前
Highjump发布了新的文献求助20
6秒前
爱窦完成签到 ,获得积分10
7秒前
ZC完成签到,获得积分10
8秒前
feng完成签到,获得积分10
9秒前
Gabriel发布了新的文献求助10
9秒前
didoo完成签到,获得积分10
10秒前
11秒前
伊笙完成签到 ,获得积分10
12秒前
772829完成签到 ,获得积分10
14秒前
gudujian870928完成签到,获得积分10
15秒前
persist发布了新的文献求助10
15秒前
chenqi完成签到,获得积分10
17秒前
dongbo666完成签到,获得积分10
18秒前
111完成签到,获得积分20
19秒前
20秒前
orixero应助坦率的惊蛰采纳,获得10
20秒前
zxx完成签到 ,获得积分10
20秒前
本草石之寒温完成签到 ,获得积分10
21秒前
RYK完成签到 ,获得积分10
22秒前
1Yer6完成签到,获得积分10
23秒前
xxxx完成签到,获得积分10
24秒前
吐泡泡的奇异果完成签到,获得积分10
24秒前
小喵完成签到 ,获得积分10
25秒前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
25秒前
gyl完成签到 ,获得积分10
26秒前
碎冰蓝完成签到,获得积分10
27秒前
xixihaha完成签到,获得积分10
27秒前
hss完成签到 ,获得积分10
29秒前
29秒前
双shuang完成签到,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
江岸区志(下卷) 800
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Global Higher Education Practices in Times of Crisis: Questions for Sustainability and Digitalization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695204
求助须知:如何正确求助?哪些是违规求助? 3246708
关于积分的说明 9850801
捐赠科研通 2958305
什么是DOI,文献DOI怎么找? 1622050
邀请新用户注册赠送积分活动 767750
科研通“疑难数据库(出版商)”最低求助积分说明 741256