Protein sequence profile prediction using ProtAlbert transformer

计算机科学 变压器 模式(遗传算法) 蛋白质测序 多序列比对 序列(生物学) 序列比对 人工智能 数据挖掘 计算生物学 模式识别(心理学) 生物信息学 肽序列 机器学习 生物 遗传学 工程类 基因 电压 电气工程
作者
Armin Behjati,Fatemeh Zare‐Mirakabad,Seyed Shahriar Arab,Abbas Nowzari-Dalini
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:99: 107717-107717 被引量:5
标识
DOI:10.1016/j.compbiolchem.2022.107717
摘要

Profiles are used to model protein families and domains. They are built by multiple sequence alignments obtained by mapping a query sequence against a database to generate a profile based on the substitution scoring matrix. The profile applications are very dependent on the alignment algorithm and scoring system for amino acid substitution. However, sometimes there are no similar sequences in the database with the query sequence based on the scoring schema. In these cases, it is not possible to make a profile. This paper proposes a method named PA_SPP, based on pre-trained ProtAlbert transformer to predict the profile for a single protein sequence without alignment. The performance of transformers on natural languages is impressive. Protein sequences can be viewed as a language; we can benefit from these models. We analyze the attention heads in different layers of ProtAlbert to show that the transformer can capture five essential protein characteristics of a single sequence. This assessment shows that ProtAlbert considers some protein properties when suggesting amino acids for each position in the sequence. In other words, transformers can be considered an appropriate alternative for alignment and scoring schema to predict a profile. We evaluate PA_SPP on the Casp13 dataset, including 55 proteins. Meanwhile, one thermophilic and two mesophilic proteins are used as case studies. The results display high similarity between the predicted profiles and HSSP profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜紫菜完成签到,获得积分10
2秒前
zhugongwangdawei完成签到,获得积分10
2秒前
admin发布了新的文献求助10
2秒前
2秒前
leodu发布了新的文献求助10
3秒前
芹菜完成签到,获得积分10
3秒前
SHAO应助璇22采纳,获得10
3秒前
3秒前
DDKK发布了新的文献求助50
4秒前
ily.完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Ava应助胡导家的菜狗采纳,获得10
6秒前
Hi完成签到 ,获得积分10
7秒前
充电宝应助lilianan采纳,获得10
7秒前
lin发布了新的文献求助20
7秒前
美好斓发布了新的文献求助30
8秒前
取昵称好难完成签到,获得积分10
8秒前
why完成签到,获得积分10
8秒前
9秒前
XIAOLI完成签到,获得积分10
9秒前
Fannia发布了新的文献求助10
9秒前
爆米花应助嘻嘻嘻采纳,获得10
9秒前
LY完成签到,获得积分10
9秒前
隐形发布了新的文献求助10
9秒前
JoshuaChen发布了新的文献求助10
10秒前
orixero应助xiaowen采纳,获得10
11秒前
SHAO应助璇22采纳,获得10
11秒前
我不是很帅完成签到,获得积分10
11秒前
sss发布了新的文献求助10
12秒前
12秒前
于是完成签到,获得积分10
13秒前
13秒前
研友_nvGWwZ发布了新的文献求助10
14秒前
1m4完成签到,获得积分10
14秒前
SYLH应助跳跃梦蕊采纳,获得20
14秒前
端庄雨兰完成签到,获得积分20
14秒前
我爱陶子完成签到 ,获得积分10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620