Carbon and water fluxes in an arid-zone Acacia savanna woodland: An analyses of seasonal patterns and responses to rainfall events

环境科学 蒸散量 蒸汽压差 涡度相关法 生态系统 含水量 用水效率 干旱 碳汇 水文学(农业) 生长季节 生态系统呼吸 土壤水分 农学 蒸腾作用 生态学 土壤科学 灌溉 生物 植物 光合作用 岩土工程 工程类
作者
Derek Eamus,James Cleverly,N. Boulain,Nicole Grant,Ralph Faux,Randol Villalobos‐Vega
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:182-183: 225-238 被引量:136
标识
DOI:10.1016/j.agrformet.2013.04.020
摘要

The study of landscape gas exchange in arid and semi-arid regions is less common than those of more mesic environments, despite their large geographical extent, their importance to regional climate, their socioeconomic values and the carbon and water balances of such regions. In this study we used eddy covariance measurements to examine net ecosystem exchange and water fluxes of a landscape dominated by a N-fixing tree (Acacia aneura; Mulga) as a function of soil moisture content, vapour pressure deficit, leaf area index and pulses of rain. Seasonal budgets of carbon and water, ecosystem-scale water-use-efficiency (the ratio of net ecosystem exchange to evapotranspiration) and inherent water-use-efficiency (ecosystem water-use-efficiency × vapour pressure deficit) were also examined. Across the 12 month study, the landscape was a net sink for carbon, despite prolonged periods of zero rain. Changes in both net ecosystem exchange and evapotranspiration were tightly coupled to changes in the moisture content of the upper (10 cm) soil profile, but not the deeper profile and both responded rapidly to changes in soil moisture content. As vapour pressure deficit increased over the course of several consecutive days in the wet season there was no significant response of ecosystem water-use-efficiency. In contrast, in the dry season, as vapour pressure deficit increased ecosystem water-use-efficiency declined curvilinearly. However, in both wet and dry seasons, ecosystem water-use-efficiency declined with increasing soil moisture content. Daily inherent water-use-efficiency increased gradually following each rainfall event. As daily mean vapour pressure deficit increased between rain events, inherent water-use-efficiency increased in both the wet and dry seasons but with a steeper slope in the wet season. However, inherent water-use-efficiency decreased with increasing soil moisture in both seasons, and the slope of a semi-log plot of inherent water-use-efficiency versus soil moisture content decreased faster in the dry season than in the wet season. Similarly, the marginal carbon cost of water was smaller (0.3) in the wet than dry season (0.6). Variations in ecosystem leaf area index were correlated with the under storey component, which was highest in the wet season and lowest in the dry season. We therefore conclude that changes in under storey leaf area index were significant drivers of seasonal changes in canopy gas exchange. Mulga, despite maintaining leaf area index through the dry season in a semi-arid environment, supports little dry season evapotranspiration and relies, to a very large extent, on soil moisture in the upper soil profile rather than deeper stores of water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赤邪发布了新的文献求助10
刚刚
Owen应助lwei采纳,获得10
刚刚
shelly0621给shelly0621的求助进行了留言
刚刚
青木蓝完成签到,获得积分10
刚刚
刚刚
迅速泽洋完成签到,获得积分10
1秒前
dan1029完成签到,获得积分10
1秒前
小王完成签到,获得积分10
1秒前
李繁蕊发布了新的文献求助10
1秒前
2秒前
2秒前
隐形曼青应助hjj采纳,获得10
2秒前
susu完成签到,获得积分10
3秒前
4秒前
caicai发布了新的文献求助10
4秒前
无情的菲鹰完成签到,获得积分10
4秒前
兔兔完成签到 ,获得积分10
4秒前
打打应助勤奋的蜗牛采纳,获得10
4秒前
5秒前
jery完成签到,获得积分10
5秒前
乐乐应助润润轩轩采纳,获得10
6秒前
指哪打哪完成签到,获得积分10
6秒前
弄井发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
7秒前
Wing完成签到 ,获得积分10
8秒前
R先生发布了新的文献求助10
8秒前
科研小白发布了新的文献求助10
8秒前
年三月完成签到 ,获得积分10
9秒前
lb完成签到,获得积分20
9秒前
9秒前
香蕉觅云应助叶飞荷采纳,获得10
10秒前
flow发布了新的文献求助10
11秒前
穆仰应助li采纳,获得10
11秒前
班尼肥鸭完成签到 ,获得积分10
11秒前
噔噔噔噔发布了新的文献求助10
11秒前
bkagyin应助ffff采纳,获得10
11秒前
000完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762