聚类分析
计算机科学
数据挖掘
CURE数据聚类算法
树冠聚类算法
相关聚类
数据流聚类
模糊聚类
算法
人工智能
出处
期刊:Ruanjian xuebao
[China Science Publishing & Media Ltd.]
日期:2008-06-30
卷期号:19 (1): 48-61
被引量:286
标识
DOI:10.3724/sp.j.1001.2008.00048
摘要
PDF HTML阅读 XML下载 导出引用 引用提醒 聚类算法研究 DOI: 作者: 作者单位: 作者简介: 通讯作者: 中图分类号: 基金项目: Supported by the National Natural Science Foundation of China under Grant Nos.60473003, 60573073 (国家自然科学基金); the Major Research Program of National Natural Science Foundation of China under Grant No.60496321 (国家自然科学基金重大项目) Clustering Algorithms Research Author: Affiliation: Fund Project: 摘要 | 图/表 | 访问统计 | 参考文献 | 相似文献 | 引证文献 | 资源附件 | 文章评论 摘要:对近年来聚类算法的研究现状与新进展进行归纳总结.一方面对近年来提出的较有代表性的聚类算法,从算法思想、关键技术和优缺点等方面进行分析概括;另一方面选择一些典型的聚类算法和一些知名的数据集,主要从正确率和运行效率两个方面进行模拟实验,并分别就同一种聚类算法、不同的数据集以及同一个数据集、不同的聚类算法的聚类情况进行对比分析.最后通过综合上述两方面信息给出聚类分析的研究热点、难点、不足和有待解决的一些问题.上述工作将为聚类分析和数据挖掘等研究提供有益的参考. Abstract:The research actuality and new progress in clustering algorithm in recent years are summarized in this paper. First, the analysis and induction of some representative clustering algorithms have been made from several aspects, such as the ideas of algorithm, key technology, advantage and disadvantage. On the other hand, several typical clustering algorithms and known data sets are selected, simulation experiments are implemented from both sides of accuracy and running efficiency, and clustering condition of one algorithm with different data sets is analyzed by comparing with the same clustering of the data set under different algorithms. Finally, the research hotspot, difficulty, shortage of the data clustering and some pending problems are addressed by the integration of the aforementioned two aspects information. The above work can give a valuable reference for data clustering and data mining. 参考文献 相似文献 引证文献
科研通智能强力驱动
Strongly Powered by AbleSci AI