声动力疗法
超声波
空化
微气泡
生物医学工程
超声成像
材料科学
治疗性超声
医学
声学
放射科
物理
作者
Qianhua Feng,Wanxia Zhang,Xuemei Yang,Yuzhen Li,Yongwei Hao,Hongling Zhang,Lin Hou,Zhenzhong Zhang
标识
DOI:10.1002/adhm.201700957
摘要
Herein, a pH/ultrasound dual-responsive gas generator is reported, which is based on mesoporous calcium carbonate (MCC) nanoparticles by loading sonosensitizer (hematoporphyrin monomethyl ether (HMME)) and modifying surface hyaluronic acid (HA). After pinpointing tumor regions with prominent targeting efficiency, HMME/MCC-HA decomposes instantaneously under the cotriggering of tumoral inherent acidic condition and ultrasound (US) irradiation, concurrently accompanying with CO2 generation and HMME release with spatial/temporal resolution. Afterward, the CO2 bubbling and bursting effect under US stimulus results in cavitation-mediated irreversible cell necrosis, as well as the blood vessel destruction to further occlude the blood supply, providing a "bystander effect." Meanwhile, reactive oxygen species generated from HMME can target the apoptotic pathways for effective sonodynamic therapy. Thus, the combination of apoptosis/necrosis with multimechanisms consequently results in a remarkable antitumor therapeutic efficacy, simultaneously minimizing the side effects on major organs. Moreover, the echogenic property of CO2 make the nanoplatform as a powerful ultrasound contrast agent to identify cancerous lesions. Based on the above findings, such all-in-one drug delivery platform of HMME/MCC-HA is utilized to provide the US imaging guidance for therapeutic inertial cavitation and sonodynamic therapy simultaneously, which highlights possibilities of advancing cancer theranostics in biomedical fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI